1
|
Zhu M, Yang Y, Niu X, Peng Y, Liu R, Zhang M, Han Y, Wang Z. Different responses of MVL neurons when pigeons attend to local versus global information during object classification. Behav Brain Res 2025; 480:115363. [PMID: 39622415 DOI: 10.1016/j.bbr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Most prior studies have indicated that pigeons have a tendency to rely on local information for target categorization, yet there is a lack of electrophysiological evidence to support this claim. The mesopallium ventrolaterale (MVL) is believed to play a role in processing both local and global information during visual cognition. The difference between responses of MVL neurons when pigeons are focusing on local versus global information during visual object categorization remain unknown. In this study, pigeons were trained to categorize hierarchical stimuli that maintained consistency in local and global information. Subsequently, stimuli with different local and global components were presented to examine the pigeons' behavioral preferences. Not surprisingly, the behavioral findings revealed that pigeons predominantly attended to the local elements when performing categorization tasks. Moreover, MVL neurons exhibited significantly distinct responses when pigeons prioritized local versus global information. Specifically, most recording sites showed heightened gamma band power and increased nonlinear entropy values, indicating strong neural responses and rich information when pigeons concentrated on the local components of an object. Furthermore, neural population functional connectivity was weaker when the pigeons focused on local elements, suggesting that individual neurons operated more independently and effectively when focusing on local features. These findings offer electrophysiological evidence supporting the notion of pigeons displaying a behavioral preference for local information. The study provides valuable insight into the understanding of cognitive processes of pigeons when presented with complex objects, and further sheds light on the neural mechanisms underlying pigeons' behavioral preference for attending to local information.
Collapse
Affiliation(s)
- Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Yedong Yang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China.
| | - Yanyan Peng
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Ruibin Liu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Mengbo Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Yonghao Han
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhizhong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Malykh S, Tarasov S, Baeva I, Nikulchev E, Kolyasnikov P, Ilin D, Marnevskaia I, Malykh A, Ismatullina V, Kuzmina Y. Large-scale study of the precision of the approximate number system: Differences between formats, heterogeneity and congruency effects. Heliyon 2023; 9:e14912. [PMID: 37064479 PMCID: PMC10102223 DOI: 10.1016/j.heliyon.2023.e14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The study used a large sample of elementary schoolchildren in Russia (N = 3,448, 51.6% were girls, with a mean age of 8.70 years, ranging 6-11 years) to investigate the congruency, format and heterogeneity effects in a nonsymbolic comparison test and between-individual differences in these effects with generalized linear mixed effects models (GLMMs). The participants were asked to compare two arrays of figures of different colours in spatially separated or spatially intermixed formats. In addition, the figures could be similar or different for the two arrays. The results revealed that congruency (difference between congruent and incongruent items), format (difference between mixed and separated formats) and heterogeneity (difference between homogeneous and heterogeneous conditions) interacted. The heterogeneity effect was higher in the separated format, while the format effect was higher for the homogeneous condition. The separated format produced a greater congruency effect than the mixed format. In addition, the congruency effect was lower in the heterogeneous condition than in the homogeneous condition. Analysis of between-individual differences revealed that there was significant between-individual variance in the format and congruency effects. Analysis of between-grade differences revealed that accuracy improved from grade 1 to grade 4 only for congruent trials in separated formats. Consequently, the congruency effect increased in separated/homogeneous and separated/heterogeneous conditions. In general, the study demonstrated that the test format and heterogeneity affected accuracy and that this effect varied for congruent and incongruent items.
Collapse
Affiliation(s)
- S. Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia
- Russian Academy of Education, Moscow, Russia
- Corresponding author. Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.
| | - S. Tarasov
- The Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - I. Baeva
- The Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E. Nikulchev
- MIREA—Russian Technological University, Moscow, Russia
| | | | - D. Ilin
- MIREA—Russian Technological University, Moscow, Russia
| | - I. Marnevskaia
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - A. Malykh
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - V. Ismatullina
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | | |
Collapse
|
3
|
Gazes RP, Templer VL, Lazareva OF. Thinking about order: a review of common processing of magnitude and learned orders in animals. Anim Cogn 2023; 26:299-317. [PMID: 36369418 DOI: 10.1007/s10071-022-01713-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Rich behavioral and neurobiological evidence suggests cognitive and neural overlap in how quantitatively comparable dimensions such as quantity, time, and space are processed in humans and animals. While magnitude domains such as physical magnitude, time, and space represent information that can be quantitatively compared (4 "is half of" 8), they also represent information that can be organized ordinally (1→2→3→4). Recent evidence suggests that the common representations seen across physical magnitude, time, and space domains in humans may be due to their common ordinal features rather than their common quantitative features, as these common representations appear to extend beyond magnitude domains to include learned orders. In this review, we bring together separate lines of research on multiple ordinal domains including magnitude-based and learned orders in animals to explore the extent to which there is support for a common cognitive process underlying ordinal processing. Animals show similarities in performance patterns across natural quantitatively comparable ordered domains (physical magnitude, time, space, dominance) and learned orders (acquired through transitive inference or simultaneous chaining). Additionally, they show transfer and interference across tasks within and between ordinal domains that support the theory of a common ordinal representation across domains. This review provides some support for the development of a unified theory of ordinality and suggests areas for future research to better characterize the extent to which there are commonalities in cognitive processing of ordinal information generally.
Collapse
Affiliation(s)
- Regina Paxton Gazes
- Department of Psychology and Program in Animal Behavior, Bucknell University, Lewisburg, PA, USA.
| | | | - Olga F Lazareva
- Department of Psychology and Neuroscience, Drake University, Des Moines, IA, USA
| |
Collapse
|
4
|
Brooks DI, Cook RG, Goto K. Perceptual grouping and detection of trial-unique emergent structures by pigeons. Anim Cogn 2022; 25:717-729. [PMID: 35028753 DOI: 10.1007/s10071-021-01586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/01/2022]
Abstract
Detecting global patterns in the environment is essential to object perception and recognition. Consistent with this, pigeons have been shown to readily detect and locate geometrically arranged, structured targets embedded in randomized backgrounds. Here we show for the first time that pigeons can detect and localize trial-unique targets derived solely from global patterns resulting from periodicity, symmetry and their combination using randomly generated segments of black and white local elements. The results indicate pigeons can perceptually segment and detect a wide variety of emergent global structures and do so even when they are unique to each trial. The perceptual and cognitive mechanisms underlying this discrimination likely play important roles in the abilities of how pigeons, and likely other birds, detect and categorize the properties of natural objects at different spatial scales.
Collapse
Affiliation(s)
| | - Robert G Cook
- Department of Psychology, Tufts University, Medford, USA.
| | - Kazuhiro Goto
- Sagami Women's University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
5
|
Changes in Pigeons’ Responses to Numerical Stimuli Depending on Total Element Area Differences between Stimuli. PSYCHOLOGICAL RECORD 2020. [DOI: 10.1007/s40732-020-00437-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
The role of item size on choosing contrasted food quantities in angelfish (Pterophyllum scalare). Sci Rep 2019; 9:15305. [PMID: 31653899 PMCID: PMC6814702 DOI: 10.1038/s41598-019-51753-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
Comparative studies on quantity discrimination in animals are important for understanding potential evolutionary roots of numerical competence. A previous study with angelfish has shown that they discriminate numerically different sets of same-sized food items and prefer the larger set. However, variables that covary with number were not controlled and choice could have been influenced by variables such as size or density of the food items rather than numerical attributes. Here using a recently developed approach, we examined whether contour length of the food items affects choice in a spontaneous binary choice task. In Experiment 1, a contrast of 1 vs. 1 food item was presented, but the ratio between the size (diameter) of the food items was varied. In Experiment 2, numerically different food sets were equated in overall size by increasing the size (diameter) of the items in the numerically small sets. In both Experiments, subjects showed a preference for the larger sized food items with a discrimination limit. These results show that item size plays a prominent role in foraging decisions in angelfish. Experiment 3 placed numerical and size attributes of the sets in conflict by presenting one larger-sized food item in the numerically smaller set that also had smaller overall size (diameter) of food items. Angelfish showed no preference in any of the contrasts, suggesting that they could not make optimal foraging decisions when these attributes were in conflict. Maximization of energy return is central to optimal foraging. Accordingly, here item size was also found to be a key feature of the sets, although the numerical attributes of the sets also influenced the choice.
Collapse
|
7
|
Delius JD, Delius JAM. Systematic Analysis of Pigeons' Discrimination of Pixelated Stimuli: A Hierarchical Pattern Recognition System Is Not Identifiable. Sci Rep 2019; 9:13929. [PMID: 31558750 PMCID: PMC6763494 DOI: 10.1038/s41598-019-50212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Pigeons learned to discriminate two different patterns displayed with miniature light-emitting diode arrays. They were then tested with 84 interspersed, non-reinforced degraded pattern pairs. Choices ranged between 100% and 50% for one or other of the patterns. Stimuli consisting of few pixels yielded low choice scores whereas those consisting of many pixels yielded a broad range of scores. Those patterns with a high number of pixels coinciding with those of the rewarded training stimulus were preferred and those with a high number of pixels coinciding with the non-rewarded training pattern were avoided; a discrimination index based on this correlated 0.74 with the pattern choices. Pixels common to both training patterns had a minimal influence. A pixel-by-pixel analysis revealed that eight pixels of one pattern and six pixels of the other pattern played a prominent role in the pigeons’ choices. These pixels were disposed in four and two clusters of neighbouring locations. A summary index calculated on this basis still only yielded a weak 0.73 correlation. The individual pigeons’ data furthermore showed that these clusters were a mere averaging mirage. The pigeons’ performance depends on deep learning in a midbrain-based multimillion synapse neuronal network. Pixelated visual patterns should be helpful when simulating perception of patterns with artificial networks.
Collapse
Affiliation(s)
- Juan D Delius
- Experimental Psychology, University of Konstanz, 78457, Konstanz, Germany.
| | - Julia A M Delius
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
| |
Collapse
|
8
|
Honeybees foraging for numbers. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:439-450. [DOI: 10.1007/s00359-019-01344-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
|
9
|
Delius JD, Delius JAM, Lee JM. Symmetry recognition by pigeons: Generalized or not? PLoS One 2017; 12:e0187541. [PMID: 29121110 PMCID: PMC5679541 DOI: 10.1371/journal.pone.0187541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
This note looks into the reasons why earlier reports may have arrived at differing conclusions about pigeons’ capacity to categorize bilaterally symmetric and asymmetric visual patterns. Attention is drawn to pigeons’ comparatively superior visual flicker resolution and superior visual linear acuity by reporting results of two ad-hoc experiments. This circumstance turns out to constrain conclusions drawn by earlier symmetry–asymmetry studies that used computer-generated patterns displayed on cathode ray tube monitors as these suffered from pictorial distortions. Additionally one of the studies involved patterns of inconsistent symmetry at global and local levels. A smaller-scale experiment using slide-projected unequivocal symmetric and asymmetric patterns yielded results compatible with the supposition that pigeons are capable of a symmetry–asymmetry categorization. The possibility that an artfactual cue may have inadvertently accentuated this capability in an earlier own experiment is considered.
Collapse
Affiliation(s)
- Juan D. Delius
- Allgemeine Psychologie, Universität Konstanz, Konstanz, Germany
- * E-mail:
| | - Julia A. M. Delius
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jennifer M. Lee
- Allgemeine Psychologie, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
DeLong CM, Barbato S, O’Leary T, Wilcox KT. Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behav Processes 2017; 141:172-183. [DOI: 10.1016/j.beproc.2016.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
|
11
|
Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychol (Amst) 2016; 171:17-35. [PMID: 27640140 DOI: 10.1016/j.actpsy.2016.09.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/09/2016] [Indexed: 01/29/2023] Open
Abstract
It is widely accepted that human and nonhuman species possess a specialized system to process large approximate numerosities. The theory of an evolutionarily ancient approximate number system (ANS) has received converging support from developmental studies, comparative experiments, neuroimaging, and computational modelling, and it is one of the most dominant and influential theories in numerical cognition. The existence of an ANS system is significant, as it is believed to be the building block of numerical development in general. The acuity of the ANS is related to future arithmetic achievements, and intervention strategies therefore aim to improve the ANS. Here we critically review current evidence supporting the existence of an ANS. We show that important shortcomings and confounds exist in the empirical studies on human and non-human animals as well as the logic used to build computational models that support the ANS theory. We conclude that rather than taking the ANS theory for granted, a more comprehensive explanation might be provided by a sensory-integration system that compares or estimates large approximate numerosities by integrating the different sensory cues comprising number stimuli.
Collapse
|
12
|
Qadri MAJ, Cook RG. Experimental Divergences in the Visual Cognition of Birds and Mammals. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2015; 10:73-105. [PMID: 26207154 PMCID: PMC4507827 DOI: 10.3819/ccbr.2015.100004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The comparative analysis of visual cognition across classes of animals yields important information regarding underlying cognitive and neural mechanisms involved with this foundational aspect of behavior. Birds, and pigeons specifically, have been an important source and model for this comparison, especially in relation to mammals. During these investigations, an extensive number of experiments have found divergent results in how pigeons and humans process visual information. Four areas of these divergences are collected, reviewed, and analyzed. We examine the potential contribution and limitations of experimental, spatial, and attentional factors in the interpretation of these findings and their implications for mechanisms of visual cognition in birds and mammals. Recommendations are made to help advance these comparisons in service of understanding the general principles by which different classes and species generate representations of the visual world.
Collapse
|
13
|
Cook RG, Qadri MA, Keller AM. The Analysis of Visual Cognition in Birds: Implications for Evolution, Mechanism, and Representation. PSYCHOLOGY OF LEARNING AND MOTIVATION 2015. [DOI: 10.1016/bs.plm.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Moll FW, Nieder A. The long and the short of it: rule-based relative length discrimination in carrion crows, Corvus corone. Behav Processes 2014; 107:142-9. [PMID: 25151937 DOI: 10.1016/j.beproc.2014.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 11/27/2022]
Abstract
Birds and other nonhuman animals can choose the larger of two discrete or continuous quantities. However, whether birds possess the conceptual grasp and cognitive control to flexibly switch between relative more-or-less-than judgments remains elusive. We therefore tested carrion crows in a rule-based line-length discrimination task to flexibly select lines presented on a touchscreen according to their relative length. In the first experiment, the crows needed to discriminate a shorter from a longer line, and vice versa. In the second experiment, the crows were required to choose a medium long line among three lines of different length (intermediate-size task). The crows switched effortlessly between "longer than/shorter than" rules, showing no signs of trial history affecting switching performance. They reliably chose the relatively longer and shorter line length, thus demonstrating a concept of greater than/less than with a continuous magnitude. However, both crows failed to discriminate a line of 'medium' length embedded in longer and shorter lines. These results indicate that relational discrimination exhibits different cognitive demands. While a greater than/less than concept requires only one relational comparison (with the respectively greater or smaller magnitude), the discrimination of a 'medium' magnitude demands to relate two or more comparisons, which might overburden crows and maybe animals in general.
Collapse
Affiliation(s)
- Felix W Moll
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Bogale BA, Aoyama M, Sugita S. Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Agrillo C, Bisazza A. Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. J Neurosci Methods 2014; 234:82-91. [PMID: 24793399 DOI: 10.1016/j.jneumeth.2014.04.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 01/29/2023]
Abstract
A large body of experimental evidence shows that animals as diverse as mammals, birds, and fish are capable of processing numerical information. Considerable differences have been reported in some cases among species and a wide debate currently surrounds the issue of whether all vertebrates share the same numerical systems or not. Part of the problem is due to the fact that these studies often use different methods, a circumstance that potentially introduces confounding factors in a comparative analysis. In most studies, two main methodological approaches have been used: spontaneous choice tests and training procedures. The former approach consists of presenting to the subjects two groups of biologically-relevant stimuli (e.g., food items or social companions) differing in numerosity with the assumption that if they are able to discriminate between the two quantities, they are expected to spontaneously select the larger/smaller quantity. In the latter approach, subjects undergo extensive training in which some neutral stimuli (e.g., a quantity of dots) are associated with a reward and the capacity to learn a numerical rule is taken as evidence of numerical abilities. We review the literature on this topic, highlighting the relevance, and potential weaknesses in controlling confounding factors obtained with either approach.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Italy
| |
Collapse
|
17
|
Gómez-Laplaza LM, Gerlai R. The role of body surface area in quantity discrimination in angelfish (Pterophyllum scalare). PLoS One 2013; 8:e83880. [PMID: 24386299 PMCID: PMC3873975 DOI: 10.1371/journal.pone.0083880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Although some fish species have been shown to be able to discriminate between two groups (shoals) of conspecifics differing in the number of members, most studies have not controlled for continuous variables that covary with number. Previously, using angelfish (Pterophyllum scalare) we started the systematic analysis of the potential influence of such continuous variables, and found that they play different roles in shoal discrimination depending on whether large (≥ 4 fish) or small (<4 fish) shoals were contrasted. Here, we examine the potential role of the overall body surface area of stimulus fish in shoal preference, a prominent variable not yet examined in angelfish. We report that both when numerically large (5 versus 10 fish) and when small (2 versus 3 fish) shoals were contrasted, angelfish were unable to discriminate the numerically different shoals as long as the surface area of the contrasted shoals was equated. Thus, we conclude that body surface may be an important continuous variable in shoal discrimination. This conclusion was further supported by the analysis of preference when shoals of the same numerical size but different body surface area were contrasted. We found subjects to spend significantly more time close to the shoals with the greater overall surface area. Last, we conducted an experiment in which we simultaneously controlled a set of continuous variables, including overall surface area, and found angelfish to use the number of shoal members as a cue only in large shoal contrasts but not in small shoal contrasts. This result suggests the potential existence of different processing systems for large and small numbers in fish.
Collapse
Affiliation(s)
| | - Robert Gerlai
- Department of Psychology, University of Toronto Missisauga, Mississauga, Ontario, Canada
| |
Collapse
|
18
|
Pepperberg IM. Abstract concepts: Data from a Grey parrot. Behav Processes 2013; 93:82-90. [DOI: 10.1016/j.beproc.2012.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/13/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022]
|
19
|
Quantification abilities in angelfish (Pterophyllum scalare): the influence of continuous variables. Anim Cogn 2012; 16:373-83. [PMID: 23161214 DOI: 10.1007/s10071-012-0578-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 09/01/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
Previous studies investigating quantity discrimination have shown that angelfish are able to select the larger of two groups of conspecifics (shoals). The discrimination limits shown by angelfish were similar to those found for other vertebrates when large (≥4) and small quantities (<4) were presented. However, in these studies, no attempt was made to control for non-numerical features of the stimulus shoals and thus the question whether numerical or some quantitative attributes of the shoals were utilized for making the choices could not be answered. Here, we investigate whether angelfish can discriminate between shoals differing in numerical size using non-numerical attributes. We systematically manipulate density, inter-fish distance, and overall space occupied by the shoals, one factor at a time, and analyse the choices angelfish made between the contrasting stimulus shoals. The stimulus shoals consisted of contrasts between large (10 vs. 5) and small (3 vs. 2) number of conspecifics. We found density to be a sufficient condition for discrimination between large shoals as the test subjects preferred the more dense shoal. Manipulation of inter-fish distance indicated that this variable is not a necessary factor in discrimination at either shoal size contrast. Likewise, we found that the size of space occupied by the contrasted shoals also did not significantly influence discrimination. Sensitivity to the density of large shoals indicates that angelfish can discriminate shoal size using this non-numerical cue. Nevertheless, the factors we examined may represent only a subset of all possible non-numerical features upon which angelfish may base their discrimination. Thus, we suggest that further research is required to clarify whether and under what circumstances angelfish may use numerical or non-numerical features when discriminating between shoals of differing size.
Collapse
|
20
|
Aust U, Steurer MM. Learning of an oddity rule by pigeons in a four-choice touch-screen procedure. Anim Cogn 2012; 16:321-41. [DOI: 10.1007/s10071-012-0574-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 07/31/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022]
|
21
|
Gómez-Laplaza LM, Gerlai R. Spontaneous discrimination of small quantities: shoaling preferences in angelfish (Pterophyllum scalare). Anim Cogn 2011; 14:565-74. [PMID: 21409443 DOI: 10.1007/s10071-011-0392-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022]
Abstract
The ability to quantify, i.e. to estimate quantity, may provide evolutionary advantages in some contexts and has been demonstrated in a variety of animal species. In a prior study, we showed that angelfish (Pterophyllum scalare) were able to discriminate between groups (shoals) in which a large number of conspecifics swam preferring to join the larger of the two. Our results implied that angelfish can compare relative shoal sizes likely on the basis of some quantitative attributes of the shoal. Here, also using a binary preference test, we examined whether angelfish are able to discriminate between shoals of small numbers of conspecifics, and if so whether their performance reveals a comparable underlying mechanism to that proposed for discrimination of small quantities in human and non-human animals, namely the possible precursor of the ability to count. Our results demonstrate that fish reliably chose 4 versus 1, 3 versus 1, 2 versus 1 and 3 versus 2 individuals, but were at chance performance level when having to choose between 4 versus 3, 5 versus 4 and 6 versus 5. Findings also reveal that the density of the fish in the stimulus shoals did not significantly affect the performance of experimental angelfish. These results are compatible with the hypothesis of the existence of an object-file mechanism to discriminate small quantities in vertebrates and provide evidence for spontaneous discrimination of up to three elements in angelfish, a similar limit to that found in human and non-human animals. The findings add to the growing body of data, suggesting that the mechanisms underlying discrimination between different quantities of items may be shared across different taxa and have an evolutionary ancient origin.
Collapse
|
22
|
Agrillo C, Piffer L, Bisazza A. Large number discrimination by mosquitofish. PLoS One 2010; 5:e15232. [PMID: 21203508 PMCID: PMC3008722 DOI: 10.1371/journal.pone.0015232] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/29/2010] [Indexed: 11/25/2022] Open
Abstract
Background Recent studies have demonstrated that fish display rudimentary numerical abilities similar to those observed in mammals and birds. The mechanisms underlying the discrimination of small quantities (<4) were recently investigated while, to date, no study has examined the discrimination of large numerosities in fish. Methodology/Principal Findings Subjects were trained to discriminate between two sets of small geometric figures using social reinforcement. In the first experiment mosquitofish were required to discriminate 4 from 8 objects with or without experimental control of the continuous variables that co-vary with number (area, space, density, total luminance). Results showed that fish can use the sole numerical information to compare quantities but that they preferentially use cumulative surface area as a proxy of the number when this information is available. A second experiment investigated the influence of the total number of elements to discriminate large quantities. Fish proved to be able to discriminate up to 100 vs. 200 objects, without showing any significant decrease in accuracy compared with the 4 vs. 8 discrimination. The third experiment investigated the influence of the ratio between the numerosities. Performance was found to decrease when decreasing the numerical distance. Fish were able to discriminate numbers when ratios were 1∶2 or 2∶3 but not when the ratio was 3∶4. The performance of a sample of undergraduate students, tested non-verbally using the same sets of stimuli, largely overlapped that of fish. Conclusions/Significance Fish are able to use pure numerical information when discriminating between quantities larger than 4 units. As observed in human and non-human primates, the numerical system of fish appears to have virtually no upper limit while the numerical ratio has a clear effect on performance. These similarities further reinforce the view of a common origin of non-verbal numerical systems in all vertebrates.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
23
|
Agrillo C, Piffer L, Bisazza A. Number versus continuous quantity in numerosity judgments by fish. Cognition 2010; 119:281-7. [PMID: 21109238 DOI: 10.1016/j.cognition.2010.10.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 10/25/2010] [Accepted: 10/29/2010] [Indexed: 11/25/2022]
Abstract
In quantity discrimination tasks, adults, infants and animals have been sometimes observed to process number only after all continuous variables, such as area or density, have been controlled for. This has been taken as evidence that processing number may be more cognitively demanding than processing continuous variables. We tested this hypothesis by training mosquitofish to discriminate two items from three in three different conditions. In one condition, continuous variables were controlled while numerical information was available; in another, the number was kept constant and information relating to continuous variables was available; in the third condition, stimuli differed for both number and continuous quantities. Fish learned to discriminate more quickly when both number and continuous information were available compared to when they could use continuous information only or number only; there was no difference in the learning rate between the two latter conditions. Our results do not support the hypothesis that processing numbers imposes a higher cognitive load than processing continuous variables. Rather, they suggest that availability of multiple information sources may facilitate discrimination learning.
Collapse
|
24
|
Bonanni R, Natoli E, Cafazzo S, Valsecchi P. Free-ranging dogs assess the quantity of opponents in intergroup conflicts. Anim Cogn 2010; 14:103-15. [PMID: 20845053 DOI: 10.1007/s10071-010-0348-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
In conflicts between social groups, the decision of competitors whether to attack/retreat should be based on the assessment of the quantity of individuals in their own and the opposing group. Experimental studies on numerical cognition in animals suggest that they may represent both large and small numbers as noisy mental magnitudes subject to scalar variability, and small numbers (≤4) also as discrete object-files. Consequently, discriminating between large quantities, but not between smaller ones, should become easier as the asymmetry between quantities increases. Here, we tested these hypotheses by recording naturally occurring conflicts in a population of free-ranging dogs, Canis lupus familiaris, living in a suburban environment. The overall probability of at least one pack member approaching opponents aggressively increased with a decreasing ratio of the number of rivals to that of companions. Moreover, the probability that more than half of the pack members withdrew from a conflict increased when this ratio increased. The skill of dogs in correctly assessing relative group size appeared to improve with increasing the asymmetry in size when at least one pack comprised more than four individuals, and appeared affected to a lesser extent by group size asymmetries when dogs had to compare only small numbers. These results provide the first indications that a representation of quantity based on noisy mental magnitudes may be involved in the assessment of opponents in intergroup conflicts and leave open the possibility that an additional, more precise mechanism may operate with small numbers.
Collapse
Affiliation(s)
- Roberto Bonanni
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, Viale Usberti 11/A, Parma, Italy.
| | | | | | | |
Collapse
|
25
|
Gómez-Laplaza LM, Gerlai R. Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Anim Cogn 2010; 14:1-9. [DOI: 10.1007/s10071-010-0337-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 01/24/2023]
|