1
|
Social motivation and the use of distal, but not local, featural cues are related to ranging behavior in free-range chickens (Gallus gallus domesticus). Anim Cogn 2020; 23:769-780. [DOI: 10.1007/s10071-020-01389-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/29/2022]
|
2
|
On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Anim Cogn 2019; 23:55-70. [PMID: 31628550 DOI: 10.1007/s10071-019-01315-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
When trained in a rectangular arena, some research has suggested that rats are guided by local features rather than overall boundary geometry. We explored this hypothesis using the terrestrial toad, Rhinella arenarum, as a comparative contrast. In two experiments, toads were trained to find a water-reward goal location in either a featureless rectangular arena (Experiment 1) or in a rectangular arena with a removable colored feature panel covering one short wall (Experiment 2). After learning to successfully locate the water reward, probe trials were carried out by changing the shape of the arena into a kite form with two 90°-angled corners, and in the case of Experiment 2, also shifting the location of the color panel. The results of Experiment 1 indicated that the toads, in contrast to rats, relied primarily on overall shape or boundary geometry to encode the location of a goal. Under the probe conditions of the altered environmental geometry in Experiment 2, the toads seemed to preferentially choose a corner that was generally correct relative to the feature panel experienced during training. Together, the data of the current study suggest that toads and rats differ in the strategies they employ to represent spatial information available in a rectangular arena. Further, the results support the hypothesis that amphibians and mammals engage different neural mechanisms, perhaps related to different evolutionary selective pressures, for the representation of environmental geometry used for navigation.
Collapse
|
3
|
Impact of social rearing-environment on performance in a complex maze in females of a cichlid fish. Behav Processes 2019; 167:103915. [PMID: 31349022 DOI: 10.1016/j.beproc.2019.103915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022]
Abstract
Spatial orientation is an important skill as it improves, for example, foraging, localisation of recourses, predator avoidance or navigation. Habitat complexity positively affects spatial abilities in various fish species with a more complex environment promoting learning ability. However, to what extent a complex social environment affects cognitive abilities in fishes has received less attention. Here, we investigated differences in maze performance of adult females of the West African cichlid fish Pelvicachromis taeniatus, which had been reared and maintained either in a group or in isolation from an early age on. Fish had to master the route through a maze in order to gain a food reward. Our results indicate marked differences in performance contingent upon social rearing-environment: isolation fish ran successful trials (i.e. locating the food reward) significantly more often than group fish and were faster during trials, also in a reversed maze. However, the number of mistakes did not differ between isolation and group fish and the time needed to relocate the food reward did not diminish with elapsed training days. In a second experiment, the activity of group and isolation fish was analysed in an open field test. Here, isolation fish were less active than group fish. We discuss different possibilities for performance differences of group and isolation fish including enhanced cognitive abilities of isolation fish, motivational/emotional differences and hyperactivity.
Collapse
|
4
|
Standing on shoulders of a giant: Marcia Spetch’s contributions to the study of spatial reorientation. Behav Processes 2019; 160:33-41. [DOI: 10.1016/j.beproc.2018.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 11/19/2022]
|
5
|
Legge ELG. Comparative spatial memory and cue use: The contributions of Marcia L. Spetch to the study of small-scale spatial cognition. Behav Processes 2019; 159:65-79. [PMID: 30611849 DOI: 10.1016/j.beproc.2018.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 11/25/2022]
Abstract
Dr. Marcia Spetch is a Canadian experimental psychologist who specializes in the study of comparative cognition. Her research over the past four decades has covered many diverse topics, but focused primarily on the comparative study of small-scale spatial cognition, navigation, decision making, and risky choice. Over the course of her career Dr. Spetch has had a profound influence on the study of these topics, and for her work she was named a Fellow of the Association for Psychological Science in 2012, and a Fellow of the Royal Society of Canada in 2017. In this review, I provide a biographical sketch of Dr. Spetch's academic career, and revisit her contributions to the study of small-scale spatial cognition in two broad areas: the use of environmental geometric cues, and how animals cope with cue conflict. The goal of this review is to highlight the contributions of Dr. Spetch, her students, and her collaborators to the field of comparative cognition and the study of small-scale spatial cognition. As such, this review stands to serve as a tribute and testament to Dr. Spetch's scientific legacy.
Collapse
Affiliation(s)
- Eric L G Legge
- Department of Psychology, MacEwan University, 10700 - 104 Avenue, City Centre Campus, Edmonton, AB, T5J 4S2, Canada.
| |
Collapse
|
6
|
Campbell KA, Proppe DS, Congdon JV, Scully EN, Miscler SK, Sturdy CB. The effects of anthropogenic noise on feeding behaviour in black-capped chickadees (Poecile atricapillus). Behav Processes 2018; 158:53-58. [PMID: 30439475 DOI: 10.1016/j.beproc.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Anthropogenic noise has been shown to impact animal behaviour. Most studies investigating anthropogenic noise, and the detrimental effect it has on behaviour, have been conducted in the field, where a myriad of covariates can make interpretation challenging. In this experiment, we studied the effects of an approximation of anthropogenic noise, simulated with brown noise, on the feeding behaviour of wild-caught black-capped chickadees in a laboratory setting. We measured the amount of time spent eating while subjects heard either conspecific calls, brown noise, or a combination of calls and brown noise. We found that subjects fed more in the silence following playback than during the playback itself for all types of stimuli, suggesting that chickadees may shift their feeding behaviour to avoid feeding during periods of noise. The ability to adapt to changing environments (e.g., varying noise levels) may allow species to thrive in the presence of anthropogenic noise. Our findings outline a laboratory-based method that could be adopted and adapted to examine a variety avian species and of types anthropogenic noise.
Collapse
Affiliation(s)
| | | | | | - Erin N Scully
- Department of Psychology, University of Alberta, Canada
| | | | - Christopher B Sturdy
- Department of Psychology, University of Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Canada.
| |
Collapse
|
7
|
McMillan N, Hahn AH, Spetch ML, Sturdy CB. Avian cognition: examples of sophisticated capabilities in space and song. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 6:285-97. [PMID: 26263230 DOI: 10.1002/wcs.1346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/21/2015] [Accepted: 02/08/2015] [Indexed: 11/09/2022]
Abstract
Although birds have traditionally and colloquially been considered less cognitively complex than mammals, and especially primates, more recent research has consistently refuted these assumptions. We argue that the impressive abilities of birds to navigate and communicate require considerable information-processing capabilities. These capacities include collecting, organizing, and selecting from a wide variety of navigational cues to orient toward and find a goal location in the spatial domain, and utilizing open-ended categorization and possibly even abstract reasoning to discriminate species-specific acoustic features of songs and calls. Furthermore, these abilities may be present across many avian species, providing evidence for domain-general cognitive facilities. We provide examples of processes in spatial learning and communication in birds, and locate them within the general literature, as evidence that the term 'bird-brain' should not be considered a pejorative.
Collapse
Affiliation(s)
- Neil McMillan
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Allison H Hahn
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Christopher B Sturdy
- Department of Psychology & the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Reichert JF, Kelly DM. How Clark's nutcrackers (Nucifraga columbiana) weigh geometric cues depends on their previous experience. Anim Cogn 2015; 18:953-68. [PMID: 25846960 DOI: 10.1007/s10071-015-0866-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 02/06/2023]
Abstract
Following passive disorientation, Clark's nutcrackers (Nucifraga columbiana) learned to search for a hidden food reward located in one corner of a rectangular-shaped enclosure that contained either identical or distinct features in each corner. Identical features allowed for explicit learning of geometric cues, whereas distinct features allowed for both explicit learning of featural cues and incidental learning of geometric cues. Birds that only learned about geometry incidentally (group Distinct) weighed features greater than geometry when the two cues were placed in conflict. However, birds that received explicit training with geometry, in addition to feature training (groups Distinct-Identical and Identical-Distinct), weighed geometry heavier relative to features. Cue preference by the birds also depended on the order in which learning was experienced; if explicit training with geometry followed that of features (group Distinct-Identical), then both geometry and features were weighed equally, but if explicit training with geometry training preceded that of features (group Identical-Distinct), the birds weighed geometry greater than features. Results suggest both a heightened sensitivity to geometric cues by Clark's nutcrackers relative to other species of birds and an increased sensitivity to any spatial cue (either features or geometry) that has proven both stable and reliable.
Collapse
Affiliation(s)
- James F Reichert
- Department of Psychology, Duff Roblin Building, University of Manitoba, 190 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
9
|
25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychon Bull Rev 2014; 20:1033-54. [PMID: 23456412 DOI: 10.3758/s13423-013-0416-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this article is to review and evaluate the range of theories proposed to explain findings on the use of geometry in reorientation. We consider five key approaches and models associated with them and, in the course of reviewing each approach, five key issues. First, we take up modularity theory itself, as recently revised by Lee and Spelke (Cognitive Psychology, 61, 152-176, 2010a; Experimental Brain Research, 206, 179-188, 2010b). In this context, we discuss issues concerning the basic distinction between geometry and features. Second, we review the view-matching approach (Stürzl, Cheung, Cheng, & Zeil, Journal of Experimental Psychology: Animal Behavior Processes, 34, 1-14, 2008). In this context, we highlight the possibility of cross-species differences, as well as commonalities. Third, we review an associative theory (Miller & Shettleworth, Journal of Experimental Psychology: Animal Behavior Processes, 33, 191-212, 2007; Journal of Experimental Psychology: Animal Behavior Processes, 34, 419-422, 2008). In this context, we focus on phenomena of cue competition. Fourth, we take up adaptive combination theory (Newcombe & Huttenlocher, 2006). In this context, we focus on discussing development and the effects of experience. Fifth, we examine various neurally based approaches, including frameworks proposed by Doeller and Burgess (Proceedings of the National Academy of Sciences of the United States of America, 105, 5909-5914, 2008; Doeller, King, & Burgess, Proceedings of the National Academy of Sciences of the United States of America, 105, 5915-5920, 2008) and by Sheynikhovich, Chavarriaga, Strösslin, Arleo, and Gerstner (Psychological Review, 116, 540-566, 2009). In this context, we examine the issue of the neural substrates of spatial navigation. We conclude that none of these approaches can account for all of the known phenomena concerning the use of geometry in reorientation and clarify what the challenges are for each approach.
Collapse
|
10
|
Hurly TA, Fox TAO, Zwueste DM, Healy SD. Wild hummingbirds rely on landmarks not geometry when learning an array of flowers. Anim Cogn 2014; 17:1157-65. [PMID: 24691650 DOI: 10.1007/s10071-014-0748-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Rats, birds or fish trained to find a reward in one corner of a small enclosure tend to learn the location of the reward using both nearby visual features and the geometric relationships of corners and walls. Because these studies are conducted under laboratory and thereby unnatural conditions, we sought to determine whether wild, free-living rufous hummingbirds (Selasphorus rufus) learning a single reward location within a rectangular array of flowers would similarly employ both nearby visual landmarks and the geometric relationships of the array. Once subjects had learned the location of the reward, we used test probes in which one or two experimental landmarks were moved or removed in order to reveal how the birds remembered the reward location. The hummingbirds showed no evidence that they used the geometry of the rectangular array of flowers to remember the reward. Rather, they used our experimental landmarks, and possibly nearby, natural landmarks, to orient and navigate to the reward. We believe this to be the first test of the use of rectangular geometry by wild animals, and we recommend further studies be conducted in ecologically relevant conditions in order to help determine how and when animals form complex geometric representations of their local environments.
Collapse
Affiliation(s)
- T Andrew Hurly
- Department of Biological Sciences, University of Lethbridge, 4401 University Dr., Lethbridge, AB, T1K 3M4, Canada,
| | | | | | | |
Collapse
|
11
|
Lambinet V, Wilzeck C, Kelly DM. Size does not matter, but features do: Clark's nutcrackers (Nucifraga columbiana) weigh features more heavily than geometry in large and small enclosures. Behav Processes 2013; 102:3-11. [PMID: 24378211 DOI: 10.1016/j.beproc.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 02/05/2023]
Abstract
Two groups of Clark's nutcrackers (Nucifraga columbiana) were trained to locate a hidden goal which was consistently located at one corner of a fully enclosed rectangular environment with distinctive cues available at each corner. One group was trained in a small enclosure, whereas the second group was trained in a large enclosure. Once the birds were showing accurate search behavior, they were presented with non-reinforced tests in either the same sized environment as training or the novel sized environment, as well as in a square-shaped environment. The birds were able to accurately search at the two geometrically correct corners when the four distinctive features were removed showing that they had encoded geometry. Although accuracy was greater when tested in the same sized environment as during training, accuracy was above chance in both environments. Regardless of the size of training enclosure both groups showed primary control by features along with secondary control by geometry. Furthermore, when the features and geometric cues provided conflicting information as to the goal location, both groups weighed featural cues over geometry, and this was independent of whether the size of the testing environment was maintained or manipulated. These results show that for Clark's nutcrackers the size of the environment had little effect on the weighing of featural and geometric cues. Furthermore, although nutcrackers encoded both features and geometry, when spatial cues provided discrepant information as to the goal location, nutcrackers relied primarily on features. This article is part of a Special Issue entitled: CO3 2013.
Collapse
Affiliation(s)
| | | | - Debbie M Kelly
- Department of Psychology, University of Saskatchewan, Canada; Department of Psychology, University of Manitoba, Canada.
| |
Collapse
|
12
|
Feenders G, Bateson M. Hand rearing affects emotional responses but not basic cognitive performance in European starlings. Anim Behav 2013; 86:127-138. [PMID: 23888084 PMCID: PMC3719021 DOI: 10.1016/j.anbehav.2013.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/12/2012] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
Hand rearing is a common procedure in behavioural research on birds. While likely to produce tamer experimental animals, there is a risk that it could induce pathological changes in brain and behaviour similar to those seen in mammals that have experienced maternal separation. We explored the effects of hand rearing on the cognitive and behavioural development of European starlings, Sturnus vulgaris, to assess the generality of results obtained from hand-reared animals. Two groups of age-matched birds were created from the same wild population: one hand-reared from 10 days posthatch and one brought into the laboratory as independent juveniles. These groups were compared on a battery of neuropsychological tasks designed to probe different aspects of cognitive function including learning, perseverative cognition, interval timing, neophobia and impulsivity. There was no evidence for cognitive impairment in the hand-reared birds. They did not have reduced learning speed, impairments in accuracy or precision of interval timing or pathological perseverative cognition compared to the wild-caught birds. Additionally, there was no evidence that birds that developed stereotypies in laboratory cages (predominantly the wild-caught birds) had any cognitive impairments, although this may be because no birds had severe, crystallized stereotypies. There was some evidence that hand-reared birds were less neophobic and less impulsive than wild-caught birds, suggesting that hand rearing might alter emotionally mediated decision making in a direction usually associated with reduced developmental stress in mammals. This study therefore supports the use of hand rearing as an experimental procedure in behavioural research on passerine birds.
Collapse
Affiliation(s)
| | - Melissa Bateson
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
13
|
Abstract
Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.
Collapse
Affiliation(s)
- Alexandra G Rosati
- Department of Evolutionary Anthropology, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
14
|
Hughes KD, Mullo E, Santos LR. Solving small spaces: investigating the use of landmark cues in brown capuchins (Cebus apella). Anim Cogn 2013; 16:803-17. [DOI: 10.1007/s10071-013-0614-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 11/25/2022]
|
15
|
Tommasi L, Laeng B. Psychology of spatial cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 3:565-580. [PMID: 26305266 DOI: 10.1002/wcs.1198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this overview, focusing on memory and higher cognitive processes, we cover some of the most relevant results that emerged from research on spatial cognition in animals and in humans in the last 3 decades. In particular, we discuss how representations of distance and direction are used to localize oneself with respect to the external world, to determine the position of objects with respect to each other, and to compute the position of invisible goals. The role of landmarks and environmental geometry as cues for extracting spatial information in such abilities is compared, and the reliance upon self-centered and external frames of reference is discussed. Moreover, the contribution of working memory and processing strategies in forming representations of spatial relations in humans is presented. Finally, implications for some neighboring fields of the cognitive sciences will be outlined. WIREs Cogn Sci 2012. doi: 10.1002/wcs.1198 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Luca Tommasi
- Department of Neuroscience and Imaging, University of Chieti, Chieti, Italy
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Twyman AD, Newcombe NS, Gould TJ. Malleability in the development of spatial reorientation. Dev Psychobiol 2012; 55:243-55. [DOI: 10.1002/dev.21017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 01/16/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra D Twyman
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada, N6A 5B7.
| | | | | |
Collapse
|
17
|
From natural geometry to spatial cognition. Neurosci Biobehav Rev 2012; 36:799-824. [PMID: 22206900 DOI: 10.1016/j.neubiorev.2011.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
|
18
|
Vargas JP, Quintero E, López JC. Influence of distal and proximal cues in encoding geometric information. Anim Cogn 2010; 14:351-8. [DOI: 10.1007/s10071-010-0369-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
|
19
|
|
20
|
Flower bats (Glossophaga soricina) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS One 2010; 5:e10808. [PMID: 20520841 PMCID: PMC2876041 DOI: 10.1371/journal.pone.0010808] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Natural selection can shape specific cognitive abilities and the extent to which a given species relies on various cues when learning associations between stimuli and rewards. Because the flower bat Glossophaga soricina feeds primarily on nectar, and the locations of nectar-producing flowers remain constant, G. soricina might be predisposed to learn to associate food with locations. Indeed, G. soricina has been observed to rely far more heavily on spatial cues than on shape cues when relocating food, and to learn poorly when shape alone provides a reliable cue to the presence of food. Methodology/Principal Findings Here we determined whether G. soricina would learn to use scent cues as indicators of the presence of food when such cues were also available. Nectar-producing plants fed upon by G. soricina often produce distinct, intense odors. We therefore expected G. soricina to relocate food sources using scent cues, particularly the flower-produced compound, dimethyl disulfide, which is attractive even to G. soricina with no previous experience of it. We also compared the learning of associations between cues and food sources by G. soricina with that of a related fruit-eating bat, Carollia perspicillata. We found that (1) G. soricina did not learn to associate scent cues, including dimethyl disulfide, with feeding sites when the previously rewarded spatial cues were also available, and (2) both the fruit-eating C. perspicillata and the flower-feeding G. soricina were significantly more reliant on spatial cues than associated sensory cues for relocating food. Conclusions/Significance These findings, taken together with past results, provide evidence of a powerful, experience-independent predilection of both species to rely on spatial cues when attempting to relocate food.
Collapse
|
21
|
Gould KL, Kelly DM, Kamil AC. What scatter-hoarding animals have taught us about small-scale navigation. Philos Trans R Soc Lond B Biol Sci 2010; 365:901-14. [PMID: 20156815 PMCID: PMC2830246 DOI: 10.1098/rstb.2009.0214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animals use cues for small-scale navigation, including beacons, landmarks, compasses and geometric properties. Scatter-hoarding animals are a unique system to study small-scale navigation. They have to remember and relocate many individual spatial locations, be fairly accurate in their searching and have to remember these locations for long stretches of time. In this article, we review what is known about cue use in both scatter-hoarding birds and rodents. We discuss the importance of local versus global cues, the encoding of bearings and geometric rules, the use of external compasses such as the Sun and the influence of the shape of experimental enclosures in relocating caches or hidden food. Scatter-hoarding animals are highly flexible in how and what they encode. There also appear to be differences in what scatter-hoarding birds and rodents encode, as well as what scatter-hoarding animals in general encode compared with other animals. Areas for future research with scatter-hoarding animals are discussed in light of what is currently known.
Collapse
Affiliation(s)
- Kristy L Gould
- Department of Psychology, Luther College, 700 College Drive, Decorah, IA 52101, USA.
| | | | | |
Collapse
|
22
|
Chiandetti C, Vallortigara G. Experience and geometry: controlled-rearing studies with chicks. Anim Cogn 2009; 13:463-70. [DOI: 10.1007/s10071-009-0297-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 01/29/2023]
Affiliation(s)
- Cinzia Chiandetti
- Department of Psychology, University of Trieste, Via S. Anastasio 12, 34123 Trieste, Italy.
| | | |
Collapse
|
23
|
Rats’ use of geometric, featural and orientation cues to locate a hidden goal. Behav Processes 2009; 82:327-34. [DOI: 10.1016/j.beproc.2009.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/02/2009] [Accepted: 08/06/2009] [Indexed: 11/22/2022]
|