1
|
Calvo R, Hofmann MH, Schluessel V. Brain areas activated during visual learning in the cichlid fish Pseudotropheus zebra. Brain Struct Funct 2023; 228:859-873. [PMID: 36920630 PMCID: PMC10147796 DOI: 10.1007/s00429-023-02627-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
The neural correlates of most cognitive functions in fish are unknown. This project aimed to identify brain regions involved in visual learning in the cichlid fish Pseudotropheus zebra. The expression of the protein pS6 was measured in 19 brain areas and compared between groups of individuals subjected to four different behavioral contexts (control, avoidance, trained, and novelty groups). Control group individuals were sacrificed with minimal interactions. Fish in the avoidance group were chased with a net for an hour, after which they were sacrificed. Individuals in the trained group received daily training sessions to associate a visual object with a food reward. They were sacrificed the day they reached learning criterion. Fish in the novelty group were habituated to one set of visual stimuli, then faced a change in stimulus type (novelty stimulus) before they were sacrificed. Fish in the three treatment groups showed the largest activation of pS6 in the inferior lobes and the tectum opticum compared to the control group. The avoidance group showed additional activation in the preoptic area, several telencephalic regions, the torus semicircularis, and the reticular formation. The trained group that received a food reward, showed additional activation of the torus lateralis, a tertiary gustatory center. The only area that showed strong activation in all three treatment groups was the nucleus diffusus situated within the inferior lobe. The inferior lobe receives prominent visual input from the tectum via the nucleus glomerulosus but so far, nothing is known about the functional details of this pathway. Our study showed for the first time that the inferior lobes play an important role in visual learning and object recognition.
Collapse
Affiliation(s)
- R Calvo
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany.
| | - M H Hofmann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany
| | - V Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany
| |
Collapse
|
2
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|
3
|
Shark Fishing vs. Conservation: Analysis and Synthesis. SUSTAINABILITY 2022. [DOI: 10.3390/su14159548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expanding shark fin market has resulted in intensive global shark fishing and with 90% of teleost fish stocks over-exploited, sharks have become the most lucrative target. As predators, they have high ecological value, are sensitive to fishing pressure, and are in decline, but the secretive nature of the fin trade and difficulties obtaining relevant data, obscure their true status. In consumer countries, shark fin is a luxury item and rich consumers pay high prices with little interest in sustainability or legal trade. Thus, market demand will continue to fuel the shark hunt and those accessible to fishing fleets are increasingly endangered. Current legal protections are not working, as exemplified by the case of the shortfin mako shark, and claims that sharks can be sustainably fished under these circumstances are shown to be misguided. In the interests of averting a catastrophic collapse across the planet’s aquatic ecosystems, sharks and their habitats must be given effective protection. We recommend that all sharks, chimaeras, manta rays, devil rays, and rhino rays be protected from international trade through an immediate CITES Appendix I listing. However, a binding international agreement for the protection of biodiversity in general is what is needed.
Collapse
|
4
|
Shark habituation to a food-related olfactory cue. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Acoustic discrimination in the grey bamboo shark Chiloscyllium griseum. Sci Rep 2022; 12:6520. [PMID: 35444192 PMCID: PMC9021286 DOI: 10.1038/s41598-022-10257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive abilities of sharks are well developed and comparable to teleosts and other vertebrates. Most studies exploring elasmobranch cognitive abilities have used visual stimuli, assessing a wide range of discrimination tasks, memory retention and spatial learning abilities. Some studies using acoustic stimuli in a cognitive context have been conducted, but a basic understanding of sound induced behavioural changes and the underlying mechanisms involved are still lacking. This study explored the acoustic discrimination abilities of seven juvenile grey bamboo sharks (Chiloscyllium griseum) using a Go/No-Go method, which so far had never been tested in sharks before. After this, the smallest frequency difference leading to a change in behaviour in the sharks was studied using a series of transfer tests. Our results show that grey bamboo sharks can learn a Go/No-Go task using both visual and acoustic stimuli. Transfer tests elucidated that, when both stimulus types were presented, both were used. Within the tested range of 90–210 Hz, a frequency difference of 20–30 Hz is sufficient to discriminate the two sounds, which is comparable to results previously collected for sharks and teleosts. Currently, there is still a substantial lack of knowledge concerning the acoustic abilities and sound induced behaviours of sharks while anthropogenic noise is constantly on the rise. New insights into shark sound recognition, detection and use are therefore of the utmost importance and will aid in management and conservation efforts of sharks.
Collapse
|
6
|
Baratti G, Potrich D, Lee SA, Morandi-Raikova A, Sovrano VA. The Geometric World of Fishes: A Synthesis on Spatial Reorientation in Teleosts. Animals (Basel) 2022; 12:881. [PMID: 35405870 PMCID: PMC8997125 DOI: 10.3390/ani12070881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Fishes navigate through underwater environments with remarkable spatial precision and memory. Freshwater and seawater species make use of several orientation strategies for adaptative behavior that is on par with terrestrial organisms, and research on cognitive mapping and landmark use in fish have shown that relational and associative spatial learning guide goal-directed navigation not only in terrestrial but also in aquatic habitats. In the past thirty years, researchers explored spatial cognition in fishes in relation to the use of environmental geometry, perhaps because of the scientific value to compare them with land-dwelling animals. Geometric navigation involves the encoding of macrostructural characteristics of space, which are based on the Euclidean concepts of "points", "surfaces", and "boundaries". The current review aims to inspect the extant literature on navigation by geometry in fishes, emphasizing both the recruitment of visual/extra-visual strategies and the nature of the behavioral task on orientation performance.
Collapse
Affiliation(s)
- Greta Baratti
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Davide Potrich
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea;
| | - Anastasia Morandi-Raikova
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Valeria Anna Sovrano
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
7
|
Porcher IF. Commentary on emotion in sharks. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
While studying the behaviour of a community of blackfin reef sharks, there was a four month long episode during which the entire company of residents and their visitors showed evidence of feeling a negative emotion towards me. They directed a variety of menacing gestures towards me, and their behaviour escalated until they began battering my kayak on my arrival in their range. Underwater, three would have slammed me personally had I not fought them off. Their behaviour suggested that their cognitive functions are complex, for they held their negative attitude in mind long-term. Two years later, under different conditions, they conveyed, via body language, a positive emotion. Social learning, social buffering, and emotional contagion were also displayed in their actions.
Collapse
Affiliation(s)
- Ila F. Porcher
- Independent Researcher, 15161 Cedar Boulevard, Hope, BC, Canada V0X 1L5
| |
Collapse
|
8
|
Rodríguez-Moldes I, Quintana-Urzainqui I, Santos-Durán GN, Ferreiro-Galve S, Pereira-Guldrís S, Candás M, Mazan S, Candal E. Identifying Amygdala-Like Territories in Scyliorhinus canicula (Chondrichthyan): Evidence for a Pallial Amygdala. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:283-304. [PMID: 34662880 DOI: 10.1159/000519221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark Scyliorhinus canicula, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as Tbr1, Lhx9, Emx1, and Dlx2. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (Tbr1 and Lhx9 expressions in an Emx1 negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Idoia Quintana-Urzainqui
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gabriel Nicolás Santos-Durán
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Susana Ferreiro-Galve
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Santiago Pereira-Guldrís
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Candás
- REBUSC-Marine Biology Station of A Graña, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls, France
| | - Eva Candal
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Schluessel V, Rick IP, Seifert FD, Baumann C, Lee Davies WI. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). J Exp Biol 2021; 224:237826. [PMID: 33771913 DOI: 10.1242/jeb.226142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Collapse
Affiliation(s)
- Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Ingolf P Rick
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Friederike Donata Seifert
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Christina Baumann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Wayne Iwan Lee Davies
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| |
Collapse
|
10
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
11
|
Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:43-58. [PMID: 33263813 PMCID: PMC7875849 DOI: 10.1007/s00359-020-01454-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 10/26/2022]
Abstract
Potamotrygon motoro has been shown to use vision to orient in a laboratory setting and has been successfully trained in cognitive behavioral studies using visual stimuli. This study explores P. motoro's visual discrimination abilities in the context of two-alternative forced-choice experiments, with a focus on shape and contrast, stimulus orientation, and visual resolution. Results support that stingrays are able to discriminate stimulus-presence and -absence, overall stimulus contrasts, two forms, horizontal from vertical stimulus orientations, and different colors that also vary in brightness. Stingrays tested in visual resolution experiments demonstrated a range of visual acuities from < 0.13 to 0.23 cpd under the given experimental conditions. Additionally, this report includes the first evidence for memory retention in this species.
Collapse
|
12
|
Electrosensory Impairment in the Atlantic Stingray, Hypanus sabinus, After Crude Oil Exposure. ZOOLOGY 2020; 143:125844. [PMID: 33130491 DOI: 10.1016/j.zool.2020.125844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
Elasmobranchs are renowned for their extremely sensitive electrosensory system, which is used to detect predators, prey, and mates, and is possibly used for navigation. The proper functioning of the electrosensory system is thus critical to fitness. The objective of this study was to test whether exposure to crude oil impairs the electroreceptive capabilities of elasmobranch fishes. Electrosensory function was quantified from six stingrays before and after exposure to a concentration of oil that mimicked empirically measured concentrations along the coast of Louisiana following the Deepwater Horizon spill. Orientation distance (cm), and angle with respect to the dipole axis of a prey-simulating electric field were used to derive the electric field intensity that elicited a response. Oil exposed stingrays continued to exhibit feeding behavior, but they initiated orientations to prey-simulating electric fields from a significantly closer orientation distance. The mean orientation distance after oil exposure was 5.29 ± 0.41 SE cm compared to a pre-exposure orientation distance of 7.16 ± 0.66 SE cm. Stingrays required a mean electric field intensity of 0.596 ± 0.21 SE μV cm-1 to initiate a response after oil exposure, compared to a mean of only 0.127 ± 0.03 SE μV cm-1 in uncontaminated seawater. Oil exposed stingrays thus exhibited a response to a stimulus approximately 4.7 times greater than controls. Stingrays impacted by an oil spill appear to experience reduced electrosensory capabilities, which could detrimentally impact fitness. This study is the first to quantify the effects of crude oil on behavioral electrosensory function.
Collapse
|
13
|
Porter BA, Mueller T. The Zebrafish Amygdaloid Complex - Functional Ground Plan, Molecular Delineation, and Everted Topology. Front Neurosci 2020; 14:608. [PMID: 32765204 PMCID: PMC7378821 DOI: 10.3389/fnins.2020.00608] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
In mammals and other tetrapods, a multinuclear forebrain structure, called the amygdala, forms the neuroregulatory core essential for emotion, cognition, and social behavior. Currently, higher circuits of affective behavior in anamniote non-tetrapod vertebrates (“fishes”) are poorly understood, preventing a comprehensive understanding of amygdala evolution. Through molecular characterization and evolutionary-developmental considerations, we delineated the complex amygdala ground plan of zebrafish, whose everted telencephalon has made comparisons to the evaginated forebrains of tetrapods challenging. In this radical paradigm, thirteen telencephalic territories constitute the zebrafish amygdaloid complex and each territory is distinguished by conserved molecular properties and structure-functional relationships with other amygdaloid structures. Central to our paradigm, the study identifies the teleostean amygdaloid nucleus of the lateral olfactory tract (nLOT), an olfactory integrative structure that links dopaminergic telencephalic groups to the amygdala alongside redefining the putative zebrafish olfactory pallium (“Dp”). Molecular characteristics such as the distribution of substance P and the calcium-binding proteins parvalbumin (PV) and calretinin (CR) indicate, that the zebrafish extended centromedial (autonomic and reproductive) amygdala is predominantly located in the GABAergic and isl1-negative territory. Like in tetrapods, medial amygdaloid (MeA) nuclei are defined by the presence of substance P immunoreactive fibers and calretinin-positive neurons, whereas central amygdaloid (CeA) nuclei lack these characteristics. A detailed comparison of lhx5-driven and vGLut2a-driven GFP in transgenic reporter lines revealed ancestral topological relationships between the thalamic eminence (EmT), the medial amygdala (MeA), the nLOT, and the integrative olfactory pallium. Thus, the study explains how the zebrafish amygdala and the complexly everted telencephalon topologically relate to the corresponding structures in mammals indicating that an elaborate amygdala ground plan evolved early in vertebrates, in a common ancestor of teleosts and tetrapods.
Collapse
Affiliation(s)
- Baylee A Porter
- Division of Biology, Kansas State University, Manhattan, KS, United States.,Department of Biochemistry and Molecular Biology, Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
|
15
|
Comparative Brain Morphology of the Greenland and Pacific Sleeper Sharks and its Functional Implications. Sci Rep 2019; 9:10022. [PMID: 31296954 PMCID: PMC6624305 DOI: 10.1038/s41598-019-46225-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (>3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle.
Collapse
|
16
|
Abstract
The dramatic evolutionary expansion of the neocortex, together with a proliferation of specialized cortical areas, is believed to underlie the emergence of human cognitive abilities. In a broader phylogenetic context, however, neocortex evolution in mammals, including humans, is remarkably conservative, characterized largely by size variations on a shared six-layered neuronal architecture. By contrast, the telencephalon in non-mammalian vertebrates, including reptiles, amphibians, bony and cartilaginous fishes, and cyclostomes, features a great variety of very different tissue structures. Our understanding of the evolutionary relationships of these telencephalic structures, especially those of basally branching vertebrates and invertebrate chordates, remains fragmentary and is impeded by conceptual obstacles. To make sense of highly divergent anatomies requires a hierarchical view of biological organization, one that permits the recognition of homologies at multiple levels beyond neuroanatomical structure. Here we review the origin and diversification of the telencephalon with a focus on key evolutionary innovations shaping the neocortex at multiple levels of organization.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Quantity discrimination in Port Jackson sharks incubated under elevated temperatures. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2706-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Edwards KL, Edes AN, Brown JL. Stress, Well-Being and Reproductive Success. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:91-162. [DOI: 10.1007/978-3-030-23633-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Immediate early gene expression related to learning and retention of a visual discrimination task in bamboo sharks (Chiloscyllium griseum). Brain Struct Funct 2018; 223:3975-4003. [PMID: 30109492 DOI: 10.1007/s00429-018-1728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Using the expression of the immediate early gene (IEG) egr-1 as a neuronal activity marker, brain regions potentially involved in learning and long-term memory functions in the grey bamboo shark were assessed with respect to selected visual discrimination abilities. Immunocytochemistry revealed a significant up-regulation of egr-1 expression levels in a small region of the telencephalon of all trained sharks (i.e., 'early' and 'late learners', 'recallers') when compared to three control groups (i.e., 'controls', 'undisturbed swimmers', 'constant movers'). There was also a well-defined difference in egr-1 expression patterns between the three control groups. Additionally, some staining was observed in diencephalic and mesencephalic sections; however, staining here was weak and occurred only irregularly within and between groups. Therefore, it could have either resulted from unintentional cognitive or non-cognitive inducements (i.e., relating to the mental processes of perception, learning, memory, and judgment, as contrasted with emotional and volitional processes) rather than being a training effect. Present findings emphasize a relationship between the training conditions and the corresponding egr-1 expression levels found in the telencephalon of Chiloscyllium griseum. Results suggest important similarities in the neuronal plasticity and activity-dependent IEG expression of the elasmobranch brain with other vertebrate groups. The presence of the egr-1 gene seems to be evolutionarily conserved and may therefore be particularly useful for identifying functional neural responses within this group.
Collapse
|
20
|
Food approach conditioning and discrimination learning using sound cues in benthic sharks. Anim Cogn 2018; 21:481-492. [DOI: 10.1007/s10071-018-1183-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/05/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
|
21
|
Discrimination of movement and visual transfer abilities in cichlids (Pseudotropheus zebra). Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Newton KC, Kajiura SM. Magnetic field discrimination, learning, and memory in the yellow stingray (Urobatis jamaicensis). Anim Cogn 2017; 20:603-614. [DOI: 10.1007/s10071-017-1084-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|
23
|
Byrnes EE, Brown C. Individual personality differences in Port Jackson sharks Heterodontus portusjacksoni. JOURNAL OF FISH BIOLOGY 2016; 89:1142-1157. [PMID: 27228221 DOI: 10.1111/jfb.12993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
This study examined interindividual personality differences between Port Jackson sharks Heterodontus portusjacksoni utilizing a standard boldness assay. Additionally, the correlation between differences in individual boldness and stress reactivity was examined, exploring indications of individual coping styles. Heterodontus portusjacksoni demonstrated highly repeatable individual differences in boldness and stress reactivity. Individual boldness scores were highly repeatable across four trials such that individuals that were the fastest to emerge in the first trial were also the fastest to emerge in subsequent trials. Additionally, individuals that were the most reactive to a handling stressor in the first trial were also the most reactive in a second trial. The strong link between boldness and stress response commonly found in teleosts was also evident in this study, providing evidence of proactive-reactive coping styles in H. portusjacksoni. These results demonstrate the presence of individual personality differences in sharks for the first time. Understanding how personality influences variation in elasmobranch behaviour such as prey choice, habitat use and activity levels is critical to better managing these top predators which play important ecological roles in marine ecosystems.
Collapse
Affiliation(s)
- E E Byrnes
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - C Brown
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
24
|
Schleimer A, Araujo G, Penketh L, Heath A, McCoy E, Labaja J, Lucey A, Ponzo A. Learning from a provisioning site: code of conduct compliance and behaviour of whale sharks in Oslob, Cebu, Philippines. PeerJ 2015; 3:e1452. [PMID: 26644984 PMCID: PMC4671167 DOI: 10.7717/peerj.1452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
While shark-based tourism is a rapidly growing global industry, there is ongoing controversy about the effects of provisioning on the target species. This study investigated the effect of feeding on whale sharks (Rhincodon typus) at a provisioning site in Oslob, Cebu, in terms of arrival time, avoidance and feeding behaviour using photo-identification and focal follows. Additionally, compliance to the code of conduct in place was monitored to assess tourism pressure on the whale sharks. Newly identified sharks gradually arrived earlier to the provisioning site after their initial sighting, indicating that the animals learn to associate the site with food rewards. Whale sharks with a long resighting history showed anticipatory behaviour and were recorded at the site on average 5 min after the arrival of feeder boats. Results from a generalised linear mixed model indicated that animals with a longer resighting history were less likely to show avoidance behaviour to touches or boat contact. Similarly, sequential data on feeding behaviour was modelled using a generalised estimating equations approach, which suggested that experienced whale sharks were more likely to display vertical feeding behaviour. It was proposed that the continuous source of food provides a strong incentive for the modification of behaviours, i.e., learning, through conditioning. Whale sharks are large opportunistic filter feeders in a mainly oligotrophic environment, where the ability to use novel food sources by modifying their behaviour could be of great advantage. Non-compliance to the code of conduct in terms of minimum distance to the shark (2 m) increased from 79% in 2012 to 97% in 2014, suggesting a high tourism pressure on the whale sharks in Oslob. The long-term effects of the observed behavioural modifications along with the high tourism pressure remain unknown. However, management plans are traditionally based on the precautionary principle, which aims to take preventive actions even if data on cause and effect are still inconclusive. Hence, an improved enforcement of the code of conduct coupled with a reduction in the conditioning of the whale sharks through provisioning were proposed to minimise the impacts on whale sharks in Oslob.
Collapse
Affiliation(s)
- Anna Schleimer
- Odyssea Marine Research and Awareness , Diekirch , Luxembourg ; Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Gonzalo Araujo
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Luke Penketh
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Anna Heath
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Emer McCoy
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Jessica Labaja
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Anna Lucey
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines
| | - Alessandro Ponzo
- Large Marine Vertebrates Research Institute Philippines , Jagna, Bohol , Philippines ; Large Marine Vertebrates Project Philippines, Physalus , Largo Callifonte, Roma , Italy
| |
Collapse
|
25
|
Schluessel V, Kortekamp N, Cortes JAO, Klein A, Bleckmann H. Perception and discrimination of movement and biological motion patterns in fish. Anim Cogn 2015; 18:1077-91. [PMID: 25981056 DOI: 10.1007/s10071-015-0876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 01/29/2023]
Abstract
Vision is of primary importance for many fish species, as is the recognition of movement. With the exception of one study, assessing the influence of conspecific movement on shoaling behaviour, the perception of biological motion in fish had not been studied in a cognitive context. The aim of the present study was therefore to assess the discrimination abilities of two teleost species in regard to simple and complex movement patterns of dots and objects, including biological motion patterns using point and point-light displays (PDs and PLDs). In two-alternative forced-choice experiments, in which choosing the designated positive stimulus was food-reinforced, fish were first tested in their ability to distinguish the video of a stationary black dot on a light background from the video of a moving black dot presented at different frequencies and amplitudes. While all fish succeeded in learning the task, performance declined with decreases in either or both parameters. In subsequent tests, cichlids and damselfish distinguished successfully between the videos of two dots moving at different speeds and amplitudes, between two moving dot patterns (sinus vs. expiring sinus) and between animated videos of two moving organisms (trout vs. eel). Transfer tests following the training of the latter showed that fish were unable to identify the positive stimulus (trout) by means of its PD alone, thereby indicating that the ability of humans to spontaneously recognize an organism based on its biological motion may not be present in fish. All participating individuals successfully discriminated between two PDs and two PLDs after a short period of training, indicating that biological motions presented in form of PLDs are perceived and can be distinguished. Results were the same for the presentation of dark dots on a light background and light dots on a dark background.
Collapse
Affiliation(s)
- V Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany,
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Schluessel V, Duengen D. Irrespective of size, scales, color or body shape, all fish are just fish: object categorization in the gray bamboo shark Chiloscyllium griseum. Anim Cogn 2014; 18:497-507. [DOI: 10.1007/s10071-014-0818-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/20/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
28
|
Rosa Salva O, Sovrano VA, Vallortigara G. What can fish brains tell us about visual perception? Front Neural Circuits 2014; 8:119. [PMID: 25324728 PMCID: PMC4179623 DOI: 10.3389/fncir.2014.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022] Open
Abstract
Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation.
Collapse
Affiliation(s)
- Orsola Rosa Salva
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
- Dipartimento di Psicologia e Scienze Cognitive, University of TrentoRovereto, Trento, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of TrentoRovereto, Trento, Italy
- Dipartimento di Psicologia e Scienze Cognitive, University of TrentoRovereto, Trento, Italy
| |
Collapse
|
29
|
Schluessel V, Rick IP, Plischke K. No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:939-47. [DOI: 10.1007/s00359-014-0940-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|