1
|
Silverman J, Taylor BW. Prey detection by a stepwise visual template matching mechanism. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241042. [PMID: 39555389 PMCID: PMC11569828 DOI: 10.1098/rsos.241042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024]
Abstract
Predators can improve prey capture using a search image, and recent prey provide a visual template with which subsequent prey are compared. Considering trout feeding responses to mayfly prey of different sizes and phenological availability across years, we tested if changing relative abundances (ratios) of prey of the same species, but different body sizes, shifted trout feeding behaviour. For example, we hypothesized that a feeding switch from larger to smaller prey required continuous exposure to the novel smaller prey. The hypothesis that continuous exposure to novel small prey results in their acceptance was not supported. Rather, we discovered that trout identify novel prey using a dynamic stepwise visual neural template prey matching process, which involves the formation of focal prey template based on size or type, rejection of novel prey that do not match the size or type templates and modification of the existing or development of multiple prey templates that eventually enabled recognition of novel, small prey. We also discovered trout store multiple visual prey templates in memory. These results have implications for predator and prey dynamics, optimal foraging, the persistence of rare prey, prey species coexistence and predator selection on prey phenology.
Collapse
Affiliation(s)
- Jules Silverman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC27695, USA
| | - Brad W. Taylor
- Department of Applied Ecology, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
2
|
Bleckmann H. The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:211-226. [PMID: 37987801 PMCID: PMC10995018 DOI: 10.1007/s00359-023-01681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
This paper is not meant to be a review article. Instead, it gives an overview of the major research projects that the author, together with his students, colleagues and collaborators, has worked on. Although the main focus of the author's work has always been the fish lateral line, this paper is mainly about all the other research projects he did or that were done in his laboratory. These include studies on fishing spiders, weakly electric fish, seals, water rats, bottom dwelling sharks, freshwater rays, venomous snakes, birds of prey, fire loving beetles and backswimmers. The reasons for this diversity of research projects? Simple. The authors's lifelong enthusiasm for animals, and nature's ingenuity in inventing new biological solutions. Indeed, this most certainly was a principal reason why Karl von Frisch and Alfred Kühn founded the Zeitschrift für vergleichende Physiologie (now Journal of Comparative Physiology A) 100 years ago.
Collapse
Affiliation(s)
- Horst Bleckmann
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Bonn, Germany.
| |
Collapse
|
3
|
Jadoul Y, Duengen D, Ravignani A. PyGellermann: a Python tool to generate pseudorandom series for human and non-human animal behavioural experiments. BMC Res Notes 2023; 16:135. [PMID: 37403146 PMCID: PMC10320995 DOI: 10.1186/s13104-023-06396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE Researchers in animal cognition, psychophysics, and experimental psychology need to randomise the presentation order of trials in experimental sessions. In many paradigms, for each trial, one of two responses can be correct, and the trials need to be ordered such that the participant's responses are a fair assessment of their performance. Specifically, in some cases, especially for low numbers of trials, randomised trial orders need to be excluded if they contain simple patterns which a participant could accidentally match and so succeed at the task without learning. RESULTS We present and distribute a simple Python software package and tool to produce pseudorandom sequences following the Gellermann series. This series has been proposed to pre-empt simple heuristics and avoid inflated performance rates via false positive responses. Our tool allows users to choose the sequence length and outputs a .csv file with newly and randomly generated sequences. This allows behavioural researchers to produce, in a few seconds, a pseudorandom sequence for their specific experiment. PyGellermann is available at https://github.com/YannickJadoul/PyGellermann .
Collapse
Affiliation(s)
- Yannick Jadoul
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Diandra Duengen
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|
5
|
Shark habituation to a food-related olfactory cue. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Acoustic discrimination in the grey bamboo shark Chiloscyllium griseum. Sci Rep 2022; 12:6520. [PMID: 35444192 PMCID: PMC9021286 DOI: 10.1038/s41598-022-10257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive abilities of sharks are well developed and comparable to teleosts and other vertebrates. Most studies exploring elasmobranch cognitive abilities have used visual stimuli, assessing a wide range of discrimination tasks, memory retention and spatial learning abilities. Some studies using acoustic stimuli in a cognitive context have been conducted, but a basic understanding of sound induced behavioural changes and the underlying mechanisms involved are still lacking. This study explored the acoustic discrimination abilities of seven juvenile grey bamboo sharks (Chiloscyllium griseum) using a Go/No-Go method, which so far had never been tested in sharks before. After this, the smallest frequency difference leading to a change in behaviour in the sharks was studied using a series of transfer tests. Our results show that grey bamboo sharks can learn a Go/No-Go task using both visual and acoustic stimuli. Transfer tests elucidated that, when both stimulus types were presented, both were used. Within the tested range of 90–210 Hz, a frequency difference of 20–30 Hz is sufficient to discriminate the two sounds, which is comparable to results previously collected for sharks and teleosts. Currently, there is still a substantial lack of knowledge concerning the acoustic abilities and sound induced behaviours of sharks while anthropogenic noise is constantly on the rise. New insights into shark sound recognition, detection and use are therefore of the utmost importance and will aid in management and conservation efforts of sharks.
Collapse
|
7
|
Volotsky S, Ben-Shahar O, Donchin O, Segev R. Recognition of natural objects in the archerfish. J Exp Biol 2022; 225:274265. [PMID: 35142811 PMCID: PMC8918800 DOI: 10.1242/jeb.243237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Recognition of individual objects and their categorization is a complex computational task. Nevertheless, visual systems can perform this task in a rapid and accurate manner. Humans and other animals can efficiently recognize objects despite countless variations in their projection on the retina due to different viewing angles, distance, illumination conditions and other parameters. To gain a better understanding of the recognition process in teleosts, we explored it in archerfish, a species that hunts by shooting a jet of water at aerial targets and thus can benefit from ecologically relevant recognition of natural objects. We found that archerfish not only can categorize objects into relevant classes but also can do so for novel objects, and additionally they can recognize an individual object presented under different conditions. To understand the mechanisms underlying this capability, we developed a computational model based on object features and a machine learning classifier. The analysis of the model revealed that a small number of features was sufficient for categorization, and the fish were more sensitive to object contours than textures. We tested these predictions in additional behavioral experiments and validated them. Our findings suggest the existence of a complex visual process in the archerfish visual system that enables object recognition and categorization. Highlighted Article: Archerfish are capable of natural object recognition and categorization based on a small number of visual features.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Opher Donchin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| |
Collapse
|
8
|
Kreuter N, Christofzik N, Niederbremer C, Bollé J, Schluessel V. Counting on Numbers-Numerical Abilities in Grey Bamboo Sharks and Ocellate River Stingrays. Animals (Basel) 2021; 11:2634. [PMID: 34573600 PMCID: PMC8466846 DOI: 10.3390/ani11092634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Over the last decade, studies examining the cognitive abilities of fish have increased, using a broad range of approaches. One of the foci has been to test the ability of fish to discriminate quantities of items and to determine whether fish can solve tasks solely on the basis of numerical information. This study is the first to investigate this ability in two elasmobranch species. All animals were trained in two-alternative forced-choice visual experiments and then examined in transfer tests, to determine if previously gained knowledge could be applied to new tasks. Results show that the grey bamboo shark (Chiloscyllium griseum) and the ocellate river stingray (Potamotrygon motoro) can discriminate quantities based on numerical information alone, while continuous variables were controlled for. Furthermore, the data indicates that similar magnitudes and limits for quantity discrimination exist as in other animals. However, the high degree of intraspecific variation that was observed as well as the low rate of animals proving to be successful suggest that the ability to discriminate quantities may not be as important to these species as to some other vertebrate and invertebrate species tested so far.
Collapse
Affiliation(s)
| | | | | | | | - Vera Schluessel
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Meckenheimerallee 169, 53115 Bonn, Germany; (N.K.); (N.C.); (C.N.); (J.B.)
| |
Collapse
|
9
|
Schluessel V, Rick IP, Seifert FD, Baumann C, Lee Davies WI. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). J Exp Biol 2021; 224:237826. [PMID: 33771913 DOI: 10.1242/jeb.226142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Collapse
Affiliation(s)
- Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Ingolf P Rick
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Friederike Donata Seifert
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Christina Baumann
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Wayne Iwan Lee Davies
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne Campus, Melbourne, VIC 3086, Australia
| |
Collapse
|
10
|
|
11
|
Fuss T, John L, Schluessel V. Same or different? Abstract relational concept use in juvenile bamboo sharks and Malawi cichlids. Curr Zool 2018; 67:279-292. [PMID: 34616920 PMCID: PMC8489000 DOI: 10.1093/cz/zoy059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022] Open
Abstract
Sorting objects and events into categories and concepts is an important cognitive prerequisite that spares an individual the learning of every object or situation encountered in its daily life. Accordingly, specific items are classified in general groups that allow fast responses to novel situations. The present study assessed whether bamboo sharks Chiloscyllium griseum and Malawi cichlids Pseudotropheus zebra can distinguish sets of stimuli (each stimulus consisting of two abstract, geometric objects) that meet two conceptual preconditions, i.e., (1) “sameness” versus “difference” and (2) a certain spatial arrangement of both objects. In two alternative forced choice experiments, individuals were first trained to choose two different, vertically arranged objects from two different but horizontally arranged ones. Pair discriminations were followed by extensive transfer test experiments. Transfer tests using stimuli consisting of (a) black and gray circles and (b) squares with novel geometric patterns provided conflicting information with respect to the learnt rule “choose two different, vertically arranged objects”, thereby investigating (1) the individuals’ ability to transfer previously gained knowledge to novel stimuli and (2) the abstract relational concept(s) or rule(s) applied to categorize these novel objects. Present results suggest that the level of processing and usage of both abstract concepts differed considerably between bamboo sharks and Malawi cichlids. Bamboo sharks seemed to combine both concepts—although not with equal but hierarchical prominence—pointing to advanced cognitive capabilities. Conversely, Malawi cichlids had difficulties in discriminating between symbols and failed to apply the acquired training knowledge on new sets of geometric and, in particular, gray-level transfer stimuli.
Collapse
Affiliation(s)
- Theodora Fuss
- Institute of Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Leonie John
- Institute of Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Vera Schluessel
- Institute of Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| |
Collapse
|
12
|
Diamond RFL, Stoinski TS, Mickelberg JL, Basile BM, Gazes RP, Templer VL, Hampton RR. Similar stimulus features control visual classification in orangutans and rhesus monkeys. J Exp Anal Behav 2016; 105:100-10. [PMID: 26615515 PMCID: PMC6413319 DOI: 10.1002/jeab.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022]
Abstract
Many species classify images according to visual attributes. In pigeons, local features may disproportionately control classification, whereas in primates global features may exert greater control. In the absence of explicitly comparative studies, in which different species are tested with the same stimuli under similar conditions, it is not possible to determine how much of the variation in the control of classification is due to species differences and how much is due to differences in the stimuli, training, or testing conditions. We tested rhesus monkeys (Macaca mulatta) and orangutans (Pongo pygmaeus and Pongo abelii) in identical tests in which images were modified to determine which stimulus features controlled classification. Monkeys and orangutans were trained to classify full color images of birds, fish, flowers, and people; they were later given generalization tests in which images were novel, black and white, black and white line drawings, or scrambled. Classification in these primate species was controlled by multiple stimulus attributes, both global and local, and the species behaved similarly.
Collapse
Affiliation(s)
| | - Tara S. Stoinski
- Zoo Atlanta, Atlanta, GA
- Dian Fossey Gorilla Fund International, Atlanta, GA
| | | | | | | | | | - Robert R. Hampton
- Emory University and Yerkes National Primate Research Center, Atlanta, GA
| |
Collapse
|
13
|
Blaser R, Heyser C. Spontaneous object recognition: a promising approach to the comparative study of memory. Front Behav Neurosci 2015; 9:183. [PMID: 26217207 PMCID: PMC4498097 DOI: 10.3389/fnbeh.2015.00183] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023] Open
Abstract
Spontaneous recognition of a novel object is a popular measure of exploratory behavior, perception and recognition memory in rodent models. Because of its relative simplicity and speed of testing, the variety of stimuli that can be used, and its ecological validity across species, it is also an attractive task for comparative research. To date, variants of this test have been used with vertebrate and invertebrate species, but the methods have seldom been sufficiently standardized to allow cross-species comparison. Here, we review the methods necessary for the study of novel object recognition in mammalian and non-mammalian models, as well as the results of these experiments. Critical to the use of this test is an understanding of the organism's initial response to a novel object, the modulation of exploration by context, and species differences in object perception and exploratory behaviors. We argue that with appropriate consideration of species differences in perception, object affordances, and natural exploratory behaviors, the spontaneous object recognition test can be a valid and versatile tool for translational research with non-mammalian models.
Collapse
Affiliation(s)
- Rachel Blaser
- Department of Psychological Sciences, University of San DiegoSan Diego, CA, USA
| | - Charles Heyser
- Behavioral Testing Core, Department of Neurosciences, University of California, San DiegoSan Diego, CA, USA
| |
Collapse
|