1
|
Lucon-Xiccato T, Gatto E, Fontana CM, Bisazza A. Quantity discrimination in newly hatched zebrafish suggests hardwired numerical abilities. Commun Biol 2023; 6:247. [PMID: 36959336 PMCID: PMC10036331 DOI: 10.1038/s42003-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An intriguing hypothesis to explain the ubiquity of numerical abilities is that all vertebrates are born with hardwired neuronal networks for processing numbers. To date, only studies on human foetuses have clearly supported this hypothesis. Zebrafish hatch 48-72 h after fertilisation with an embryonic nervous system, providing a unique opportunity for investigating this hypothesis. Here, we demonstrated that zebrafish larvae exposed to vertical bars at birth acquired an attraction for bar stimuli and we developed a numerical discrimination task based on this preference. When tested with a series of discriminations of increasing difficulty (1vs.4, 1vs.3, 1vs.2, and 2vs.4 bars), zebrafish larvae reliably selected the greater numerosity. The preference was significant when stimuli were matched for surface area, luminance, density, and convex hull, thereby suggesting a true capacity to process numerical information. Converging results from two phylogenetically distant species suggests that numerical abilities might be a hallmark feature of vertebrates' brains.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
3
|
Messina A, Potrich D, Schiona I, Sovrano VA, Vallortigara G. The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals (Basel) 2021; 11:ani11113072. [PMID: 34827804 PMCID: PMC8614421 DOI: 10.3390/ani11113072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary The ability to deal with quantity, both discrete (numerosities) and continuous (spatial or temporal extent) developed from an evolutionarily conserved system for approximating numerical magnitude. Non-symbolic number cognition based on an approximate sense of magnitude has been documented in a variety of vertebrate species, including fish. Fish, in particular zebrafish, are widely used as models for the investigation of the genetics and molecular mechanisms of behavior, and thus may be instrumental to development of a neurobiology of number cognition. We review here the behavioural studies that have permitted to identify numerical abilities in fish, and the current status of the research related to the neurobiological bases of these abilities with special reference to zebrafish. Combining behavioural tasks with molecular genetics, molecular biology and confocal microscopy, a role of the retina and optic tectum in the encoding of continuous magnitude in larval zebrafish has been reported, while the thalamus and the dorso-central subdivision of pallium in the encoding of discrete magnitude (number) has been documented in adult zebrafish. Research in fish, in particular zebrafish, may reveal instrumental for identifying and characterizing the molecular signature of neurons involved in quantity discrimination processes of all vertebrates, including humans. Abstract It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Ilaria Schiona
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| |
Collapse
|
4
|
Balestrieri A, Gazzola A, Pellitteri-Rosa D, Vallortigara G. Discrimination of group numerousness under predation risk in anuran tadpoles. Anim Cogn 2019; 22:223-230. [DOI: 10.1007/s10071-019-01238-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 11/29/2022]
|
5
|
Reynisson H, Ólafsdóttir GÁ. Plasticity in activity and latency to explore differs between juvenile Atlantic cod Gadus morhua across a temperature gradient. JOURNAL OF FISH BIOLOGY 2018; 92:274-280. [PMID: 29210079 DOI: 10.1111/jfb.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
In the current study activity and latency to explore, as well as the correlation of these traits, were examined in individually marked juvenile Gadus morhua at 7, 10 and 13° C. It was concluded that individual rank order of both traits was maintained across temperature but that the level of change differed between individuals.
Collapse
Affiliation(s)
- H Reynisson
- Research Centre of the Westfjords, University of Iceland, Hafnarstraeti 9b, Bolungarvík, 415, Iceland
| | - G Á Ólafsdóttir
- Research Centre of the Westfjords, University of Iceland, Hafnarstraeti 9b, Bolungarvík, 415, Iceland
| |
Collapse
|
6
|
Gómez-Laplaza LM, Caicoya ÁL, Gerlai R. Quantity discrimination in angelfish (Pterophyllum scalare) is maintained after a 30-s retention interval in the large but not in the small number range. Anim Cogn 2017. [PMID: 28620776 DOI: 10.1007/s10071-017-1104-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ability to discriminate between sets that differ in the number of elements can be useful in different contexts and may have survival and fitness consequences. As such, numerical/quantity discrimination has been demonstrated in a diversity of animal species. In the laboratory, this ability has been analyzed, for example, using binary choice tests. Furthermore, when the different number of items first presented to the subjects are subsequently obscured, i.e., are not visible at the moment of making a choice, the task requires memory for the size of the sets. In previous work, angelfish (Pterophyllum scalare) have been found to be able to discriminate shoals differing in the number of shoal members both in the small (less than 4) and the large (4 or more) number range, and they were able to perform well even when a short memory retention interval (2-15 s) was imposed. In the current study, we increased the retention interval to 30 s during which the shoals to choose between were obscured, and investigated whether angelfish could show preference for the larger shoal they saw before this interval. Subjects were faced with a discrimination between numerically small shoals (≤4 fish) and also between numerically large (≥4 fish) shoals of conspecifics. We found angelfish not to be able to remember the location of larger versus smaller shoals in the small number range, but to exhibit significant memory for the larger shoal in the large number range as long as the ratio between these shoals was at least 2:1. These results, together with prior findings, suggest the existence of two separate quantity estimation systems, the object file system for small number of items that does not work with the longer retention interval and the analogue magnitude system for larger number of items that does.
Collapse
Affiliation(s)
- Luis M Gómez-Laplaza
- Department of Psychology, University of Oviedo, Plaza de Feijoo s/n, 33003, Oviedo, Spain.
| | - Álvaro L Caicoya
- Department of Psychology, University of Oviedo, Plaza de Feijoo s/n, 33003, Oviedo, Spain
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
7
|
Agrillo C, Bisazza A. Understanding the origin of number sense: a review of fish studies. Philos Trans R Soc Lond B Biol Sci 2017; 373:20160511. [PMID: 29292358 PMCID: PMC5784038 DOI: 10.1098/rstb.2016.0511] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 02/02/2023] Open
Abstract
The ability to use quantitative information is thought to be adaptive in a wide range of ecological contexts. For nearly a century, the numerical abilities of mammals and birds have been extensively studied using a variety of approaches. However, in the last two decades, there has been increasing interest in investigating the numerical abilities of teleosts (i.e. a large group of ray-finned fish), mainly due to the practical advantages of using fish species as models in laboratory research. Here, we review the current state of the art in this field. In the first part, we highlight some potential ecological functions of numerical abilities in fish and summarize the existing literature that demonstrates numerical abilities in different fish species. In many cases, surprising similarities have been reported among the numerical performance of mammals, birds and fish, raising the question as to whether vertebrates' numerical systems have been inherited from a common ancestor. In the second part, we will focus on what we still need to investigate, specifically the research fields in which the use of fish would be particularly beneficial, such as the genetic bases of numerical abilities, the development of these abilities and the evolutionary foundation of vertebrate number sense.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| |
Collapse
|
8
|
Agrillo C, Miletto Petrazzini ME, Bisazza A. Numerical abilities in fish: A methodological review. Behav Processes 2017; 141:161-171. [PMID: 28167200 DOI: 10.1016/j.beproc.2017.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/01/2022]
Abstract
The ability to utilize numerical information can be adaptive in a number of ecological contexts including foraging, mating, parental care, and anti-predator strategies. Numerical abilities of mammals and birds have been studied both in natural conditions and in controlled laboratory conditions using a variety of approaches. During the last decade this ability was also investigated in some fish species. Here we reviewed the main methods used to study this group, highlighting the strengths and weaknesses of each of the methods used. Fish have only been studied under laboratory conditions and among the methods used with other species, only two have been systematically used in fish-spontaneous choice tests and discrimination learning procedures. In the former case, the choice between two options is observed in a biologically relevant situation and the degree of preference for the larger/smaller group is taken as a measure of the capacity to discriminate the two quantities (e.g., two shoals differing in number). In discrimination learning tasks, fish are trained to select the larger or the smaller of two sets of abstract objects, typically two-dimensional geometric figures, using food or social companions as reward. Beyond methodological differences, what emerges from the literature is a substantial similarity of the numerical abilities of fish with those of other vertebrates studied.
Collapse
Affiliation(s)
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Italy
| |
Collapse
|