1
|
Bridging pure cognitive research and cognitive enrichment. Anim Cogn 2022; 25:1671-1678. [PMID: 35652984 DOI: 10.1007/s10071-022-01636-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023]
Abstract
Cognitive enrichment is a growing subset of environmental enrichment for captive animals. However, it has been difficult for practitioners to design, implement, and evaluate relevant and appropriate cognitive challenges. Even though pure comparative cognition researchers focus on fundamental evolutionary questions, their knowledge and expertise can also shape the future of cognitive enrichment. This paper describes the motive, means, and opportunity to do so. Taxon-specific summaries of animal cognition (including inter-individual variation in skill and effects of motivation), and experimental designs (including the task itself, training, and reward) need to be accessible to practitioners in applied settings, such as farms, zoos, and sanctuaries. Furthermore, I invite pure researchers to directly evaluate their cognitive research program as enrichment and thus bridge the disciplines of animal cognition and welfare.
Collapse
|
2
|
De Meester G, Baeckens S. Reinstating reptiles: from clueless creatures to esteemed models of cognitive biology. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-00003718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Non-avian reptiles have long been neglect in cognitive science due to their reputation as slow and inflexible learners, but fortunately, this archaic view on reptile cognition is changing rapidly. The last two decades have witnessed a renewed interest in the cognitive capacities of reptiles, and more ecologically relevant protocols have been designed to measure such abilities. Now, we appreciate that reptiles possess an impressive set of cognitive skills, including problem-solving abilities, fast and flexible learning, quantity discrimination, and even social learning. This special issue highlights current research on reptiles in cognitive biology and showcases the diversity of research questions that can be answered by using reptiles as study model. Here, we briefly address (the key results of) the contributing articles and their role in the endeavour for total inclusion of reptiles in cognitive biological research, which is instrumental for our understanding of the evolution of animal cognition. We also discuss and illustrate the promising potential of reptiles as model organisms in various areas of cognitive research.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| |
Collapse
|
3
|
De Meester G, Sfendouraki-Basakarou A, Pafilis P, Van Damme R. Dealing with the unexpected: the effect of environmental variability on behavioural flexibility in a Mediterranean lizard. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract
Harsh and variable environments have been hypothesized to both drive and constrain the evolution towards higher cognitive abilities and behavioural flexibility. In this study, we compared the cognitive abilities of island and mainland Aegean wall lizards (Podarcis erhardii), which were expected to live in respectively a more variable and a more stable habitat. We used four proxies of behavioural flexibility: a neophobia assay, a problem-solving test and a spatial + reversal learning task. Surprisingly, the two populations did not differ in neophobia or problem-solving. Insular lizards, however, outperformed mainland conspecifics in an initial spatial learning task, but were less successful during the subsequent reversal learning. Our results thus seem to indicate that the effect of environmental variability on cognition is complex, as it may favour some, but not all aspects of behavioural flexibility.
Collapse
Affiliation(s)
- Gilles De Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Alkyoni Sfendouraki-Basakarou
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Pafilis
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Raoul Van Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Stanton LA, Bridge ES, Huizinga J, Johnson SR, Young JK, Benson-Amram S. Variation in reversal learning by three generalist mesocarnivores. Anim Cogn 2020; 24:555-568. [PMID: 33231749 DOI: 10.1007/s10071-020-01438-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023]
Abstract
Urbanization imposes novel challenges for wildlife, but also provides new opportunities for exploitation. Generalist species are commonly found in urban habitats, but the cognitive mechanisms facilitating their successful behavioral adaptations and exploitations are largely under-investigated. Cognitive flexibility is thought to enable generalists to be more plastic in their behavior, thereby increasing their adaptability to a variety of environments, including urban habitats. Yet direct measures of cognitive flexibility across urban wildlife are lacking. We used a classic reversal-learning paradigm to investigate the cognitive flexibility of three generalist mesocarnivores commonly found in urban habitats: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), and coyotes (Canis latrans). We developed an automated device and testing protocol that allowed us to administer tests of reversal learning in captivity without extensive training or experimenter involvement. Although most subjects were able to rapidly form and reverse learned associations, we found moderate variation in performance and behavior during trials. Most notably, we observed heightened neophobia and a lack of habituation expressed by coyotes. We discuss the implications of such differences among generalists with regard to urban adaptation and we identify goals for future research. This study is an important step in investigating the relationships between cognition, generalism, and urban adaptation.
Collapse
Affiliation(s)
- Lauren A Stanton
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.
- Program in Ecology, University of Wyoming, Laramie, WY, USA.
| | - Eli S Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA
| | | | - Shylo R Johnson
- USDA/APHIS/WS National Wildlife Research Center, Fort Collins, CO, USA
| | - Julie K Young
- USDA/APHIS/WS National Wildlife Research Center - Predator Research Facility, Millville, UT, USA
| | - Sarah Benson-Amram
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- Program in Ecology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
5
|
Szabo B, Noble DWA, Whiting MJ. Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev Camb Philos Soc 2020; 96:331-356. [PMID: 33073470 DOI: 10.1111/brv.12658] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023]
Abstract
Recently, there has been a surge in cognition research using non-avian reptile systems. As a diverse group of animals, non-avian reptiles [turtles, the tuatara, crocodylians, and squamates (lizards, snakes and amphisbaenids)] are good model systems for answering questions related to cognitive ecology, from the role of the environment on the brain, behaviour and learning, to how social and life-history factors correlate with learning ability. Furthermore, given their variable social structure and degree of sociality, studies on reptiles have shown that group living is not a pre-condition for social learning. Past research has demonstrated that non-avian reptiles are capable of more than just instinctive reactions and basic cognition. Despite their ability to provide answers to fundamental questions in cognitive ecology, and a growing literature, there have been no recent systematic syntheses of research in this group. Here, we systematically, and comprehensively review studies on reptile learning. We identify 92 new studies investigating learning in reptiles not included in previous reviews on this topic - affording a unique opportunity to provide a more in-depth synthesis of existing work, its taxonomic distribution, the types of cognitive domains tested and methodologies that have been used. Our review therefore provides a major update on our current state of knowledge and ties the collective evidence together under nine umbrella research areas: (i) habituation of behaviour, (ii) animal training through conditioning, (iii) avoiding aversive stimuli, (iv) spatial learning and memory, (v) learning during foraging, (vi) quality and quantity discrimination, (vii) responding to change, (viii) solving novel problems, and (ix) social learning. Importantly, we identify knowledge gaps and propose themes which offer important future research opportunities including how cognitive ability might influence fitness and survival, testing cognition in ecologically relevant situations, comparing cognition in invasive and non-invasive populations of species, and social learning. To move the field forward, it will be immensely important to build upon the descriptive approach of testing whether a species can learn a task with experimental studies elucidating causal reasons for cognitive variation within and among species. With the appropriate methodology, this young but rapidly growing field of research should advance greatly in the coming years providing significant opportunities for addressing general questions in cognitive ecology and beyond.
Collapse
Affiliation(s)
- Birgit Szabo
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.,Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, Bern, 3032, Switzerland
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
6
|
Learmonth MJ. The Matter of Non-Avian Reptile Sentience, and Why It "Matters" to Them: A Conceptual, Ethical and Scientific Review. Animals (Basel) 2020; 10:E901. [PMID: 32455969 PMCID: PMC7278454 DOI: 10.3390/ani10050901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
The concept of sentience, how it is characterised and which non-human animals possess it have long been of contention in academic and intellectual debates. Many have argued that there is no way to empirically know that animals have conscious experiences. Yet others argue that consciousness, awareness and sentience in non-human animals can be quite obvious, and can indeed be measured empirically. Most modern declarations of animal sentience from official organisations and governments now include all vertebrate animals as sentient beings, including reptiles and fish. Some declarations also include some invertebrate species. This conceptual, ethical and scientific review first focuses on conceptual components and definitions of consciousness, awareness and sentience. It then specifically discusses how cognitive, neurobiological, ethological and comparative psychological research in non-avian reptiles over the last century has evidenced many capacities that historically were denied to this class of animals. Non-avian reptiles do indeed possess all of the necessary capacities to be declared as sentient beings, at least in the small proportion of reptile species that have actually been empirically investigated so far. It is suggested that much innovative future research will continue to uncover evidence of capabilities linked to sentience within a wide range of species, including non-avian reptiles, fish and invertebrates.
Collapse
Affiliation(s)
- Mark James Learmonth
- Animal Welfare Science Centre, The University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
7
|
Serial reversal learning in freshwater stingrays (Potamotrygon motoro). Anim Cogn 2019; 23:109-119. [DOI: 10.1007/s10071-019-01321-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|