1
|
Degrande R, Cornilleau F, Jardat P, Ferreira VHB, Lansade L, Calandreau L. A cognitive approach to better understand foraging strategies of the adult domestic hen. Sci Rep 2024; 14:19265. [PMID: 39164385 PMCID: PMC11336211 DOI: 10.1038/s41598-024-70093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Foraging is known to be one of the most important activities in the behavioral budget of chickens. However, how these animals adapt different foraging strategies to diverse environmental variations is currently poorly understood. To gain further insight into this matter, in the present study, hens were submitted to the sloped-tubes task. In this task, the experimenter can manipulate the information that enables the hens to find a food reward (visible or not), placed in one of two hollow tubes. First, 12 hens were tested under free-choice conditions (no penalty for exhaustive searching in both tubes). Under these conditions, the hens adopted a non-random, side-biased strategy when the food location was not directly visible. Then, we divided the hens in two cohorts of equal size to study deeper the hens' foraging strategy when faced (1) with a different container, or (2) with a restrictive environmental constraint under forced-choice conditions (no food reward if the unbaited tube is visited first). This latter constraint increased the risk of the hen not receiving food. A change in the containers didn't modify the search behavior of the hens. However, in forced-choice conditions when the location of the food was not directly visible, four out of six hens learned to choose by exclusion. We conclude that hens can selectively adapt their foraging strategy to the point of adopting an exclusion performance, depending on available information and environmental constraints (high or low risk).
Collapse
Affiliation(s)
- R Degrande
- CNRS, IFCE, INRAE, PRC (Physiologie de la Reproduction et des Comportements), Université de Tours, 37380, Nouzilly, Indre-et-Loire, France.
| | - F Cornilleau
- CNRS, IFCE, INRAE, PRC (Physiologie de la Reproduction et des Comportements), Université de Tours, 37380, Nouzilly, Indre-et-Loire, France
| | - P Jardat
- CNRS, IFCE, INRAE, PRC (Physiologie de la Reproduction et des Comportements), Université de Tours, 37380, Nouzilly, Indre-et-Loire, France
| | - V H B Ferreira
- CNRS, IFCE, INRAE, PRC (Physiologie de la Reproduction et des Comportements), Université de Tours, 37380, Nouzilly, Indre-et-Loire, France
| | - L Lansade
- CNRS, IFCE, INRAE, PRC (Physiologie de la Reproduction et des Comportements), Université de Tours, 37380, Nouzilly, Indre-et-Loire, France
| | - L Calandreau
- CNRS, IFCE, INRAE, PRC (Physiologie de la Reproduction et des Comportements), Université de Tours, 37380, Nouzilly, Indre-et-Loire, France
| |
Collapse
|
2
|
Brebner JS, Loconsole M, Hanley D, Vasas V. Through an animal's eye: the implications of diverse sensory systems in scientific experimentation. Proc Biol Sci 2024; 291:20240022. [PMID: 39016597 PMCID: PMC11253838 DOI: 10.1098/rspb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/01/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
'Accounting for the sensory abilities of animals is critical in experimental design.' No researcher would disagree with this statement, yet it is often the case that we inadvertently fall for anthropocentric biases and use ourselves as the reference point. This paper discusses the risks of adopting an anthropocentric view when working with non-human animals, and the unintended consequences this has on our experimental designs and results. To this aim, we provide general examples of anthropocentric bias from different fields of animal research, with a particular focus on animal cognition and behaviour, and lay out the potential consequences of adopting a human-based perspective. Knowledge of the sensory abilities, both in terms of similarities to humans and peculiarities of the investigated species, is crucial to ensure solid conclusions. A more careful consideration of the diverse sensory systems of animals would improve many scientific fields and enhance animal welfare in the laboratory.
Collapse
Affiliation(s)
- Joanna S. Brebner
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Maria Loconsole
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vera Vasas
- School of Life Sciences, University of Sussex, BrightonBN1 9RH, UK
| |
Collapse
|
3
|
Wild skuas can follow human-given behavioural cues when objects resemble natural food. Anim Cogn 2023; 26:709-713. [PMID: 36153760 DOI: 10.1007/s10071-022-01692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 02/06/2023]
Abstract
The capacity to follow human cues provides animals with information about the environment and can hence offer obvious adaptive benefits. Most studies carried out so far, however, have been on captive animals with previous experience with humans. Further comparative investigation is needed to properly assess the factors driving the emergence of this capacity under natural conditions, especially in species that do not have longstanding interactions with humans. Wild brown skuas (Catharacta antarctica ssp. lonnbergi) are non-neophobic seabirds that live in human-free habitats. In test 1, we assessed this species' capacity to use human behavioural cues (i.e., pecking at the same object previously picked up and lifted by a human experimenter) when the items presented were food objects: anthropogenic objects (wrapped muffins) and natural-food-resembling objects (plaster eggs). In test 2, we examined the response of another skua population towards non-food objects (sponges). Although all skuas in test 1 pecked at the objects, they pecked significantly more at the same previously handled items when they resembled natural food (plaster eggs). Most skuas in test 2, however, did not approach or peck at the non-food objects presented. Our results lead us to suggest that the use of human behavioural cues may be influenced by skuas' foraging ecology, which paves the way to further field studies assessing whether this capacity is directed specifically towards food objects and/or develops after previous interaction with humans.
Collapse
|
4
|
Assessing sex differences in behavioural flexibility in an endangered bird species: the Southern ground-hornbill (Bucorvus leadbeateri). Anim Cogn 2023; 26:599-609. [PMID: 36251104 DOI: 10.1007/s10071-022-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
Abstract
Since ecology influences the expression of cognitive traits, intra-specific variation in ecological demands can drive differences in cognition. This is often the case, for instance, when sexes face different ecological challenges. However, so far, most studies have focused on few cognitive domains (i.e., spatial cognition), which limits our understanding of the evolution of sexually dimorphic cognition in animals. Endangered Southern ground-hornbills (Bucorvus leadbeateri), for example, show sex-specific ecological differences in age at dispersal, where females disperse from their natal group earlier than males. Based on this potential sex-specific source of selection, females and males may differ in their capacity to behave flexibly. Here, we used the reversal-learning paradigm in ten Southern ground-hornbills in two conditions: spatial and colour. During the pre-test (learning phase), regardless the sex, all subjects were faster at associating the food reward with spatial rather than with colour cues. Similarly, during the test (reversal-learning phase), both sexes learned the new association quicker with spatial cues. There were no sex differences in learning or reversal learning during both experimental phases. This possibility, however, requires further observation and experimentation. We hope our study will provide the impetus to assess further the cognitive capacities of this still overlooked species.
Collapse
|
5
|
Congratulations to Animal Cognition on its 50th birthday! Some thoughts on the last 50 years of animal cognition research. Anim Cogn 2023; 26:13-23. [PMID: 36264405 DOI: 10.1007/s10071-022-01706-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
In this article, the author reflects on some of the key issues that have arisen in comparative cognition and the role and impact of the journal Animal Cognition through its first 25 years by pretending to look back at this period from the year 2047. Successes within comparative cognition are described and the role that Animal Cognition has played in the growth of comparative cognition are discussed. Concerns are presented about issues that affect the opportunities that researchers have to work with nonhuman species and to produce good comparative cognitive science. Prescriptions for what the author hopes will happen next also are offered all in the lens of a prospectively imagined retrospective on this field.
Collapse
|
6
|
Both sheep and goats can solve inferential by exclusion tasks. Anim Cogn 2022; 25:1631-1644. [PMID: 35920940 DOI: 10.1007/s10071-022-01656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/01/2022]
Abstract
Despite the domestication of sheep and goats by humans for several millennia, we still lack comparative data on their cognitive capacity. Comparing the cognitive skills of farm animals can help understand the evolution of cognition. In this study, we compared the performances of sheep and goats in inference by exclusion tasks. We implemented two tasks, namely a cup task and a tube task, to identify whether success in solving the task could be attributed to either low-level mechanisms (avoiding the empty location strategy) or to deductive reasoning (if two possibilities A and B, but not A, then it must be B). In contrast to a previous study comparing goats and sheep in a cup task, we showed that both species solved the inferential condition with high success rates. In the tube task, performances could not be explained by alternative strategies such as avoiding the empty tube or preferring the bent tube. When applying a strict set of criteria concerning responses in all conditions and controlling for the potential effects of experience, we demonstrate that two individuals, a goat and a sheep, fulfil these criteria. This suggests that sheep and goats are able to make inferences based on deductive reasoning.
Collapse
|
7
|
Assessing the spontaneous use of human-given cues in ground-hornbills. Behav Processes 2022; 199:104659. [DOI: 10.1016/j.beproc.2022.104659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
|
8
|
Through the eyes of a hunter: assessing perception and exclusion performance in ground-hornbills. Anim Cogn 2022; 25:1665-1670. [PMID: 35394265 DOI: 10.1007/s10071-022-01619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Logical inference, once strictly associated with spoken language, is now reported in some non-human animals. One aspect of logical inference, reasoning by exclusion, has been traditionally explored through the use of the cups task (cup A and cup B, if not cup A, then exclude cup A and select cup B). However, to fully understand the factors that drove the evolution of logical processes in animals, this latter paradigm needs to cover a taxonomically broader spectrum of species. In this study, we aimed to test the capacity of Southern ground-hornbills (Bucorvus leadbeateri) to show exclusion performance in a two-way object-choice task. First, we determined whether subjects could perceive and choose correctly between two containers (one rewarded, one unrewarded) using visual or acoustic cues (sensory phase). If successful, individuals were then presented with three experimental conditions (test phase): Full information (content of both cups revealed), Exclusion (content of the empty cup revealed), and Control (no content revealed). During the sensory phase, ground-hornbills succeeded in choosing the rewarded container only in the visual modality. Birds were able to select the rewarded container more than would be expected by chance in the Full information condition, but their performances were equal to chance in the Control condition. The without-learning performance of two individuals within the Exclusion condition indicates that this task is not trivial, which invites further investigation on this species' capacity to represent the dependent relationship between the cups (true logical inference).
Collapse
|
9
|
Wild skuas can use acoustic cues to locate hidden food. Anim Cogn 2022; 25:1357-1363. [PMID: 35292871 DOI: 10.1007/s10071-022-01611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
Among animals, the visual acuity of several predatory bird species is probably the most outstanding. This, and the ease with which visually based tasks are administered, has led researchers to predominantly use the visual modality when studying avian cognition. Some wild skua populations routinely use acoustic cues emitted by their prey during foraging. In this study, we thus assessed whether this species was able to locate hidden food using acoustic cues alone (training phase). During the subsequent test phase, we investigated the capacity of successful individuals to choose the correct baited container in four conditions: (i) baited (shaking the baited container), (ii) full information (shaking both containers), (iii) exclusion (shaking the empty container), and (iv) control (shaking neither container). Four out of ten subjects succeeded in locating the baited container in the training phase. During the test phase, most subjects chose the baited container significantly more than the empty container in the baited and full information condition, while their performance was at chance level in the control condition. When no sound emanated from the empty container in the exclusion condition, one out of four skuas chose the baited container with more accuracy than predicted by chance. As this bird chose correctly on the first trial and during the first five trials, its performance is unlikely due to learning processes (learning to exclude the empty container). Although further tests are necessary to draw firm conclusions, our results open the way for assessing further this species' reasoning abilities in the wild.
Collapse
|
10
|
Rubene D, Urhan U, Ninkovic V, Brodin A. Great Tits Learn Odors and Colors Equally Well, and Show No Predisposition for Herbivore-Induced Plant Volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.800057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ability to efficiently localize productive foraging habitat is crucial for nesting success of insectivorous birds. Some bird species can use olfaction to identify caterpillar-infested trees by detection of herbivore induced plant volatiles (HIPVs), but these cues probably need to be learned. So far, we know very little about the process of olfactory learning in birds, whether insectivorous species have a predisposition for detecting and learning HIPVs, due to the high ecological significance of these odors, and how olfaction is integrated with vision in making foraging decisions. In a standardized setup, we tested whether 35 wild-caught great tits (Parus major) show any preference for widely abundant HIPVs compared to neutral (non-induced) plant odors, how fast they learn to associate olfactory, visual and multimodal foraging cues with food, and whether the olfactory preferences and learning speed were influenced by bird sex or habitat (urban or rural). We also tested how fast birds switch to a new cue of the same modality. Great tits showed no initial preference for HIPVs compared to neutral odors, and they learned all olfactory cues at a similar pace, except for methyl salicylate (MeSA), which they learned more slowly. We also found no differences in learning speeds between visual, olfactory and multimodal foraging cues, but birds learned the second cue they were offered faster than the first one. Bird sex or habitat had no effect on learning speed or olfactory preference, but urban birds tended to learn visual cues more slowly. We conclude that insectivorous birds utilize olfactory and visual cues with similar efficiency in foraging, and that they probably don‘t have any special predisposition toward the tested HIPVs. These results confirm that great tits are flexible foragers with good learning abilities.
Collapse
|
11
|
Lamarre J, Wilson DR. Waterbird solves the string-pull test. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211343. [PMID: 34966556 PMCID: PMC8633784 DOI: 10.1098/rsos.211343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 05/03/2023]
Abstract
String-pulling is among the most widespread cognitive tasks used to test problem-solving skills in mammals and birds. The task requires animals to comprehend that pulling on a non-valuable string moves an otherwise inaccessible food reward to within their reach. Although at least 90 avian species have been administered the string-pull test, all but five of them were perching birds (passeriformes) or parrots (psittaciformes). Waterbirds (Aequorlitornithes) are poorly represented in the cognitive literature, yet are known to engage in complex foraging behaviours. In this study, we tested whether free-living ring-billed gulls (Larus delawarensis), a species known for their behavioural flexibility and foraging innovativeness, could solve a horizontal string-pull test. Here, we show that 25% (26/104) of the ring-billed gulls that attempted to solve the test at least once over a maximum of three trials were successful, and that 21% of them (22/104) succeeded during their first attempt. Ring-billed gulls are thus the first waterbird known to solve a horizontal single-string-rewarded string-pull test. Since innovation rate and problem-solving are associated with species' ability to endure environmental alterations, we suggest that testing the problem-solving skills of other species facing environmental challenges will inform us of their vulnerability in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, Canada
| | - David R. Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|