1
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
2
|
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci 2023; 17:1215097. [PMID: 37600004 PMCID: PMC10433210 DOI: 10.3389/fnins.2023.1215097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The retina and brain share similar neurochemistry and neurodevelopmental origins, with the retina, often viewed as a "window to the brain." With retinal measures of structure and function becoming easier to obtain in clinical populations there is a growing interest in using retinal findings as potential biomarkers for disorders affecting the central nervous system. Functional retinal biomarkers, such as the electroretinogram, show promise in neurological disorders, despite having limitations imposed by the existence of overlapping genetic markers, clinical traits or the effects of medications that may reduce their specificity in some conditions. This narrative review summarizes the principal functional retinal findings in central nervous system disorders and related mouse models and provides a background to the main excitatory and inhibitory retinal neurotransmitters that have been implicated to explain the visual electrophysiological findings. These changes in retinal neurochemistry may contribute to our understanding of these conditions based on the findings of retinal electrophysiological tests such as the flash, pattern, multifocal electroretinograms, and electro-oculogram. It is likely that future applications of signal analysis and machine learning algorithms will offer new insights into the pathophysiology, classification, and progression of these clinical disorders including autism, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, depression, Parkinson's, and Alzheimer's disease. New clinical applications of visual electrophysiology to this field may lead to earlier, more accurate diagnoses and better targeted therapeutic interventions benefiting individual patients and clinicians managing these individuals and their families.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Jeremiah K. H. Lim
- Discipline of Optometry, School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Alves JN, Westner BU, Højlund A, Weil RS, Dalal SS. Structural and functional changes in the retina in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:448-456. [PMID: 36806480 PMCID: PMC7614544 DOI: 10.1136/jnnp-2022-329342] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
Parkinson's disease is caused by degeneration of dopaminergic neurons, originating in the substantia nigra pars compacta and characterised by bradykinesia, rest tremor and rigidity. In addition, visual disorders and retinal abnormalities are often present and can be identified by decreased visual acuity, abnormal spatial contrast sensitivity or even difficulty in complex visual task completion. Because of their early onset in patients with de novo Parkinson's disease, the anatomical retinal changes and electrophysiological modification could be valuable markers even at early stages of the disease. However, due to the concomitant occurrence of normal ageing, the relevance and specificity of these predictive values can be difficult to interpret. This review examines retinal dysfunction arising in Parkinson's disease. We highlight the electrophysiological delays and decreased amplitude in the electroretinography recorded in patients and animal models. We relate this to coexisting anatomical changes such as retinal nerve fibre layer and macular thinning, measured using optical coherence tomography, and show that functional measures are more consistent overall than optical coherence-measured structural changes. We review the underlying chemical changes seen with loss of retinal dopaminergic neurons and the effect of levodopa treatment on the retina in Parkinson's disease. Finally, we consider whether retinal abnormalities in Parkinson's disease could have a role as potential markers of poorer outcomes and help stratify patients at early stages of the disease. We emphasise that retinal measures can be valuable, accessible and cost-effective methods in the early evaluation of Parkinson's disease pathogenesis with potential for patient stratification.
Collapse
Affiliation(s)
- Jordan N Alves
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Britta U Westner
- Radboud University, Donders Institute for Brain, Cognition and Behaviours, Nijmegen, The Netherlands
| | - Andreas Højlund
- Department of Linguistics, Cognitive Science & Semiotics, Aarhus University, Aarhus, Denmark
| | - Rimona Sharon Weil
- Dementia Research Centre, University College London, London, UK.,Movement Disorders Consortium, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
The Relationship between Visual-Evoked Potential and Optic Coherence Tomography and Clinical Findings in Parkinson Patients. PARKINSON'S DISEASE 2023; 2023:7739944. [PMID: 36873294 PMCID: PMC9981293 DOI: 10.1155/2023/7739944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Background In Parkinson's disease (PD), dopamine deficiency is present not only in the nigrostriatal pathway but also in the retinal and visual pathways. Optic coherence tomography (OCT) can be used as morphological evidence of visual influence from early nonmotor symptoms. The aim of this study was to investigate the relationship of OCT and visual evoked potentials (VEPs) of eyes with the severity of clinical findings and ocular findings in PD. Methods A group of 42 patients diagnosed with idiopathic PD and a control group of 29 people between the ages of 45-85 were included in our study. VEP was recorded in the patient and control groups. OCT measurement was made with the Optovue spectral-domain device. Foveal thickness and macular volume were measured in the foveal region and in the parafoveal and perifoveal regions in the temporal, superior, nasal, and inferior quadrants. RNFL (retinal nerve fiber layer) was measured in temporal, superior, nasal, and inferior quadrants. Ganglion cell complex (GCC) was evaluated in the superior and inferior quadrants. Using the UPDRS clinical scale, the relationship between measurements and the differences between the control group and the patient group were evaluated. Results Among the OCT values in our study, foveal, parafoveal, perifoveal thickness, macular volume, RNFL, and GCC measurements were performed for the right and left eyes, and no difference was found between the patient group and the control group. There was no difference in VEP amplitude and latency values between the patient and control groups. The relationships between UPDRS and modified Hoehn Yahr staging and OCT and VEP measurements in the patient revealed no correlation. Conclusions Studies on whether OCT measurements can functionally be a marker or which segments are more valuable for disease progression in patients with PD are needed. Visual dysfunction in PD cannot be attributed only to retinal pathology; however, the retina may provide monitoring of the status of dopaminergic neurodegeneration and axonal loss in PD.
Collapse
|
5
|
Du H, Shen X, Du X, Zhao L, Zhou W. Altered Visual Cortical Excitability Is Associated With Psychopathological Symptoms in Major Depressive Disorder. Front Psychiatry 2022; 13:844434. [PMID: 35321224 PMCID: PMC8936091 DOI: 10.3389/fpsyt.2022.844434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Previous studies suggest that in people with major depressive disorder (MDD), there exists a perturbation of the normal balance between the excitatory and inhibitory neurotransmitter systems in the visual cortex, indicating the possibility of altered visual cortical excitability. However, investigations into the neural activities of the visual cortex in MDD patients yielded inconsistent findings. The present study aimed to evaluate the visual cortical excitability utilizing a paired-pulse stimulation paradigm in patients with MDD and to access the paired-pulse behavior of recording visual evoked potentials (VEPs) as a marker of MDD. We analyzed the amplitudes of VEPs and paired-pulse suppression (PPS) at four different stimulus onset asynchronies (SOAs) spanning 93 ms to 133 ms. Further, the relationship between PPS and the symptom severity of depression was investigated using Spearman's correlation. We found that, whereas the first VEP amplitude remained unchanged, the second VEP amplitude was significantly higher in the MDD group compared to the healthy controls. As a result, the amplitude ratio (second VEP amplitude/first VEP amplitude) increased, indicating reduced PPS and thus increased excitability in the visual cortex. Moreover, we found the amplitude ratios had a significantly positive correlation with the symptom severity of depression in MDD, indicating a clinically useful biomarker for MDD. Our findings provide new insights into the changes in the excitation-inhibition balance of visual cortex in MDD, which could pave the way for specific clinical interventions.
Collapse
Affiliation(s)
- Hongheng Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Xue Shen
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Xiaoyan Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Division of Clinical Electrophysiology Center, Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China
| | - Wenjun Zhou
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Veys L, Devroye J, Lefevere E, Cools L, Vandenabeele M, De Groef L. Characterizing the Retinal Phenotype of the Thy1-h[A30P]α-syn Mouse Model of Parkinson's Disease. Front Neurosci 2021; 15:726476. [PMID: 34557068 PMCID: PMC8452874 DOI: 10.3389/fnins.2021.726476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Despite decades of research, disease-modifying treatments of Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, remain out of reach. One of the reasons for this treatment gap is the incomplete understanding of how misfolded alpha-synuclein (α-syn) contributes to PD pathology. The retina, as an integral part of the central nervous system, recapitulates the PD disease processes that are typically seen in the brain, and retinal manifestations have emerged as prodromal symptoms of the disease. The timeline of PD manifestations in the visual system, however, is not fully elucidated and the underlying mechanisms are obscure. This highlights the need for new studies investigating retinal pathology, in order to propel its use as PD biomarker, and to develop validated research models to investigate PD pathogenesis. The present study pioneers in characterizing the retina of the Thy1-h[A30P]α-syn PD transgenic mouse model. We demonstrate widespread α-syn accumulation in the inner retina of these mice, of which a proportion is phosphorylated yet not aggregated. This α-syn expression coincides with inner retinal atrophy due to postsynaptic degeneration. We also reveal abnormal retinal electrophysiological responses. Absence of selective loss of melanopsin retinal ganglion cells or dopaminergic amacrine cells and inflammation indicates that the retinal manifestations in these transgenic mice diverge from their brain phenotype, and questions the specific cellular or molecular alterations that underlie retinal pathology in this PD mouse model. Nevertheless, the observed α-syn accumulation, synapse loss and functional deficits suggest that the Thy1-h[A30P]α-syn retina mimics some of the features of prodromal PD, and thus may provide a window to monitor and study the preclinical/prodromal stages of PD, PD-associated retinal disease processes, as well as aid in retinal biomarker discovery and validation.
Collapse
Affiliation(s)
- Lien Veys
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Joyce Devroye
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Evy Lefevere
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lien Cools
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Marjan Vandenabeele
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
7
|
Ma X, Wang Y, Wang N, Zhang R. Retina thickness in atypical parkinsonism: a systematic review and meta-analysis. J Neurol 2021; 269:1272-1281. [PMID: 34245345 DOI: 10.1007/s00415-021-10703-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the retina thickness assessed using optical coherence tomography in atypical parkinsonism in comparison with health controls (HC) and patients with Parkinson's disease (PD). METHODS PubMed and EMBASE were searched for potentially eligible studies that reported retina thickness in atypical parkinsonism [including progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and corticobasal degeneration] in comparison with that of HC and PD patients from their dates of inception to Jan 24, 2021. Mean difference (μm) of the thickness of peripapillary retinal nerve fiber layer (pRNFL) and central macular thickness (CMT) were pooled with random effects model. RESULTS We included ten studies eligible for inclusion criteria. Average pRNFL thickness and average CMT were thinner in PSP [pooled mean difference (μm) of - 4.71, 95% CI (- 7.15, - 2.27); - 15.12, 95% CI (- 16.93, - 13.30)] and in MSA [- 5.37, 95% CI (- 6.59, - 4.15); - 5.93, 95% CI (- 11.00, - 0.87)] compared with HC, and were thinner in PSP [- 5.81, 95% CI (- 8.92, - 2.69); - 10.63, 95% CI (- 20.29, - 0.98)] and in MSA [- 0.35 μm, 95% CI (- 5.72, 5.01); - 7.42 μm [95% CI (- 12.46, - 2.38)] compared with PD. The pRNFL thickness was thinning in superior, inferior and nasal quadrants, and CMT was thinning in outer sectors in MSA compared with HC. CONCLUSIONS The retina thickness was significantly thinner in PSP and MSA than those in HC and PD. The specific patterns of retina thinning in MSA could be clinical importance for differentiation among atypical parkinsonism.
Collapse
Affiliation(s)
- Xiaoli Ma
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Yujie Wang
- Department of Neurology, People's Hospital, China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Nan Wang
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Ruijun Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
8
|
|
9
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Alkabie S, Lange A, Manogaran P, Stoessl AJ, Costello F, Barton JJS. Optical coherence tomography of patients with Parkinson's disease and progressive supranuclear palsy. Clin Neurol Neurosurg 2019; 189:105635. [PMID: 31855622 DOI: 10.1016/j.clineuro.2019.105635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/23/2019] [Accepted: 12/07/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To determine if Parkinson's disease (PD) and progressive supranuclear palsy (PSP) differed on retinal measurements using optical coherence tomography (OCT). PATIENTS AND METHODS In a prospective, controlled, cross-sectional cohort study, we recruited patients with PD or PSP for more than three years, as well as control subjects. We measured peripapillary retinal nerve fiber layer (RNFL) thickness and macular volume using spectral-domain OCT. The association between these OCT measures and the disease characteristics of duration and disability were examined using a linear mixed effect model. RESULTS We analyzed eyes from n = 12 PD patients, n = 11 PSP patients, and n = 12 control subjects. RNFL thickness was reduced in eyes from patients with PSP, but there were no differences in macular volume between groups. RNFL thickness and macular volume were not significantly different between eyes from patients with PD and controls. Worse disability was associated with reduced macular volumes. CONCLUSION PSP but not PD is associated with thinning of the peripapillary RNFL when symptoms have been present for more than three years.
Collapse
Affiliation(s)
- Samir Alkabie
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada; Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, USA; Department of Neurology, Kings County Hospital, Brooklyn, NY, USA.
| | - Alex Lange
- Neuro-ophthalmology, Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada; Vista Klinik, Vista Diagnostics and Laser Vista, Binningen, Switzerland
| | - Praveena Manogaran
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - A Jon Stoessl
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Fiona Costello
- Neuro-ophthalmology, Department of Clinical Neurosciences and Surgery, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jason J S Barton
- Neuro-ophthalmology, Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L. Retinal α-synuclein deposits in Parkinson's disease patients and animal models. Acta Neuropathol 2019; 137:379-395. [PMID: 30721408 DOI: 10.1007/s00401-018-01956-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of research, accurate diagnosis of Parkinson's disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson's disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson's disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson's disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson's disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson's disease in the brain. To better understand the visual defects seen in Parkinson's disease patients and to propel the use of retinal changes as biomarkers for Parkinson's disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson's disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson's disease.
Collapse
|
12
|
Fujisawa Y, Minato T, Uemura JI, Hoshiyama M, Watanabe H, Hirayama M. Association between changes in visual evoked magnetic fields and non-motor features in Parkinson's disease. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018. [PMID: 28626250 PMCID: PMC5472540 DOI: 10.18999/nagjms.79.2.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visual dysfunction can be caused by several abnormalities, including dysfunctions in the visual cortex and retina. Our aim was to investigate changes in visual evoked brain responses in the primary visual cortex associated with Parkinson’s disease (PD). Sixteen healthy control subjects and ten patients with PD participated in this study. We assessed the visual evoked magnetic field (VEF) using magnetoencephalography (MEG). Checkerboard pattern reversal (CPR) and monotonous grating pattern (MGP) stimulations were used. Magnetic resonance imaging (MRI) was performed to analyze brain volume and generate a tractogram. Cognitive and olfactory function, and Unified Parkinson’s Disease Rating Scale (UPDRS) scores were evaluated in patients with PD. Four components of the VEF (1M, 2M, 3M, 4M) were observed following stimulation. For both stimuli, results from the 1M and 2M components were significantly greater and the latency of the 1M component was increased markedly in the PD group compared with the healthy control group. In the PD group, 1M latency correlated with the UPDRS score of 1 for both stimuli, and a correlation was observed between olfactory function and the UPDRS score of 3 for the CPR stimulation alone. We suggest that the conduction delay observed following visual stimulation occurs peripherally rather than in the primary visual cortex. Degeneration of selective elements of the visual system in the retina, possibly midget cells, may be involved.
Collapse
Affiliation(s)
- Yoshiro Fujisawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomomi Minato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun-Ichi Uemura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers. Mov Disord 2018; 33:1390-1406. [DOI: 10.1002/mds.27454] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Li Guo
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Eduardo M. Normando
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| | - Parth Arvind Shah
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Lies De Groef
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Neural Circuit Development and Regeneration Research Group, Department of Biology; University of Leuven; Leuven Belgium
| | - M. Francesca Cordeiro
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| |
Collapse
|
14
|
Abstract
This chapter describes the visual problems likely to be encountered in Parkinson's disease (PD) and whether such signs are useful in differentiating the parkinsonian syndromes. Visual dysfunction in PD may involve visual acuity, contrast sensitivity, color discrimination, pupil reactivity, saccadic and pursuit eye movements, motion perception, visual fields, and visual processing speeds. In addition, disturbance of visuospatial orientation, facial recognition problems, rapid eye movement (REM) sleep behavior disorder, and chronic visual hallucinations may be present. Problems affecting pupil reactivity, stereopsis, pursuit eye movement, and visuomotor adaptation, when accompanied by REM sleep behavior disorder, could be early features of PD. Dementia associated with PD is associated with enhanced eye movement problems, visuospatial deficits, and visual hallucinations. Visual dysfunction may be a useful diagnostic feature in differentiating PD from other parkinsonian symptoms, visual hallucinations, visuospatial dysfunction, and variation in saccadic eye movement problems being particularly useful discriminating features.
Collapse
|
15
|
Mendoza-Santiesteban CE, Gabilondo I, Palma JA, Norcliffe-Kaufmann L, Kaufmann H. The Retina in Multiple System Atrophy: Systematic Review and Meta-Analysis. Front Neurol 2017; 8:206. [PMID: 28596752 PMCID: PMC5443142 DOI: 10.3389/fneur.2017.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/27/2017] [Indexed: 01/16/2023] Open
Abstract
Background Multiple system atrophy (MSA) is a rare, adult-onset, rapidly progressive fatal synucleinopathy that primarily affects oligodendroglial cells in the brain. Patients with MSA only rarely have visual complaints, but recent studies of the retina using optical coherence tomography (OCT) showed atrophy of the peripapillary retinal nerve fiber layer (RNFL) and to a lesser extent the macular ganglion cell layer (GCL) complex. Methods We performed a literature review and meta-analysis according to the preferred reporting items for systematic reviews and meta-analyses guidelines for studies published before January 2017, identified through PubMed and Google Scholar databases, which reported OCT-related outcomes in patients with MSA and controls. A random-effects model was constructed. Results The meta-analysis search strategy yielded 15 articles of which 7 met the inclusion criteria. The pooled difference in the average thickness of the RNFL was −5.48 μm (95% CI, −6.23 to −4.73; p < 0.0001), indicating significant thinning in patients with MSA. The pooled results showed significant thinning in all the specific RNFL quadrants, except in the temporal RNFL quadrant, where the thickness in MSA and controls was similar [pooled difference of 1.11 µm (95% CI, −4.03 to 6.26; p = 0.67)]. This pattern of retinal damage suggests that MSA patients have preferential loss of retinal ganglion cells projecting to the magnocellular pathway (M-cells), which are mainly located in the peripheral retina and are not essential for visual acuity. Visual acuity, on the other hand, relies mostly on macular ganglion cells projecting to the parvocellular pathway (P-cells) through the temporal portion of the RNFL, which are relatively spared in MSA patients. Conclusion The retinal damage in patients with MSA differs from that observed in patients with Parkinson disease (PD). Patients with MSA have more relative preservation of temporal sector of the RNFL and less severe atrophy of the macular GCL complex. We hypothesize that in patients with MSA there is predominant damage of large myelinated optic nerve axons like those originating from the M-cells. These large axons may require higher support from oligodendrocytes. Conversely, in patients with PD, P-cells might be more affected.
Collapse
Affiliation(s)
| | - Iñigo Gabilondo
- Biocruces Health Research Institute, Neurodegenerative Diseases Group, Barakaldo, Spain
| | - Jose Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, United States
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, United States
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
The role of the retina in visual hallucinations: A review of the literature and implications for psychosis. Neuropsychologia 2017; 99:128-138. [DOI: 10.1016/j.neuropsychologia.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
|
17
|
Abstract
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Collapse
|
18
|
Armstrong RA. Visual signs and symptoms of multiple system atrophy. Clin Exp Optom 2014; 97:483-91. [PMID: 25256122 DOI: 10.1111/cxo.12206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/24/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.
Collapse
|
19
|
Foveal vision is impaired in Parkinson's disease. Parkinsonism Relat Disord 2013; 19:1-14. [DOI: 10.1016/j.parkreldis.2012.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/16/2012] [Accepted: 07/21/2012] [Indexed: 11/23/2022]
|
20
|
Remodeling of the fovea in Parkinson disease. J Neural Transm (Vienna) 2012; 120:745-53. [DOI: 10.1007/s00702-012-0909-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/19/2012] [Indexed: 01/24/2023]
|
21
|
Armstrong RA. Visual symptoms in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:908306. [PMID: 21687773 PMCID: PMC3109513 DOI: 10.4061/2011/908306] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/21/2011] [Accepted: 03/24/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a common disorder of middle-aged and elderly people in which degeneration of the extrapyramidal motor system causes significant movement problems. In some patients, however, there are additional disturbances in sensory systems including loss of the sense of smell and auditory and/or visual problems. This paper is a general overview of the visual problems likely to be encountered in PD. Changes in vision in PD may result from alterations in visual acuity, contrast sensitivity, colour discrimination, pupil reactivity, eye movements, motion perception, visual field sensitivity, and visual processing speeds. Slower visual processing speeds can also lead to a decline in visual perception especially for rapidly changing visual stimuli. In addition, there may be disturbances of visuospatial orientation, facial recognition problems, and chronic visual hallucinations. Some of the treatments used in PD may also have adverse ocular reactions. The pattern electroretinogram (PERG) is useful in evaluating retinal dopamine mechanisms and in monitoring dopamine therapies in PD. If visual problems are present, they can have an important effect on the quality of life of the patient, which can be improved by accurate diagnosis and where possible, correction of such defects.
Collapse
Affiliation(s)
- R. A. Armstrong
- Department of Vision Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
22
|
Sartucci F, Borghetti D, Bocci T, Murri L, Orsini P, Porciatti V, Origlia N, Domenici L. Dysfunction of the magnocellular stream in Alzheimer's disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res Bull 2010; 82:169-76. [PMID: 20385208 DOI: 10.1016/j.brainresbull.2010.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/07/2010] [Accepted: 04/01/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND Visuo-spatial disturbances could represent a clinical feature of early stage Alzheimer's disease (AD). The magnocellular (M) pathway has anatomo-physiological characteristic which make it more suitable for detecting form, motion and depth compared with parvocellular one (P). OBJECTIVE Aim of our study was to evaluate specific visual subsystem involvement in a group of AD patients, recording isoluminant chromatic and luminance pattern electroretinograms and pattern visual evoked potentials. MATERIAL AND METHODS data were obtained from 15 AD patients (9 females and 6 males, mean age+/-1SD: 77.6+/-4.01 years) not yet undergoing any treatment, and from 10 age-matched healthy controls. Diagnosis of probable AD was clinically and neuroradiologically established. PERGs were recorded monocularly in response to equiluminant red-green (R-G), blue-yellow (B-Y) and luminance yellow-black (Y-Bk) horizontal square gratings of 0.3c/deg and 90% contrast, reversed at 1Hz. VEPs were recorded in response to full-field (14 deg) equiluminant chromatic R-G, B-Y and luminance Y-Bk sinusoidal gratings of 2c/deg, presented in onset (300ms)-offset (700ms) mode, at the contrast levels of 90%. RESULTS All data were retrieved in terms of peak-amplitude and latency and assessed using the Student's t-test for paired data. Temporal differences of PERGs and VEPs, evoked by Y-Bk grating in AD patients compared with controls, suggest a specific impairment of the magnocellular stream. CONCLUSIONS Our study support the hypothesis that the impairment of the PERGs and VEPs arising from the magnocellular streams of visual processing may indicate a primary dysfunction of the M-pathways in AD.
Collapse
Affiliation(s)
- F Sartucci
- Department of Neuroscience, Unit of Neurology, Pisa University Medical School, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
As a more complete picture of the clinical phenotype of Parkinson's disease emerges, non-motor symptoms have become increasingly studied. Prominent among these non-motor phenomena are mood disturbance, cognitive decline and dementia, sleep disorders, hyposmia and autonomic failure. In addition, visual symptoms are common, ranging from complaints of dry eyes and reading difficulties, through to perceptual disturbances (feelings of presence and passage) and complex visual hallucinations. Such visual symptoms are a considerable cause of morbidity in Parkinson's disease and, with respect to visual hallucinations, are an important predictor of cognitive decline as well as institutional care and mortality. Evidence exists of visual dysfunction at several levels of the visual pathway in Parkinson's disease. This includes psychophysical, electrophysiological and morphological evidence of disruption of retinal structure and function, in addition to disorders of 'higher' (cortical) visual processing. In this review, we will draw together work from animal and human studies in an attempt to provide an insight into how Parkinson's disease affects the retina and how these changes might contribute to the visual symptoms experienced by patients.
Collapse
Affiliation(s)
- Neil K Archibald
- Clinical Research Fellow, Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | | | | | | |
Collapse
|
24
|
Sannita WG, Carozzo S, Orsini P, Domenici L, Porciatti V, Fioretto M, Garbarino S, Sartucci F. 'Gamma' band oscillatory response to chromatic stimuli in volunteers and patients with idiopathic Parkinson's disease. Vision Res 2009; 49:726-34. [PMID: 19232367 DOI: 10.1016/j.visres.2009.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 01/13/2009] [Accepted: 01/24/2009] [Indexed: 10/21/2022]
Abstract
The signal structure of the responses to equiluminant chromatic and achromatic (contrast) stimuli was studied in normal volunteers and patients with mild to moderate idiopathic Parkinson's disease. Visual stimuli were full-field (14 x 16 deg) achromatic or equiluminant (red-green or blue-yellow) sinusoidal gratings at 2c/deg and 90% contrast presented in onset-offset mode. The signal was processed offline by DFT and factor analysis was performed in the frequency domain. The conventional VEPs to chromatic onset stimuli showed a monophasic negative wave, while the response to offset stimuli was comparable in shape to the on-/offset achromatic responses; latencies were longer and amplitudes higher than those of responses to contrast stimulation. In patients, latencies were longer than in controls after achromatic and (to a lesser extent) red-green stimulations, but not after blue-yellow stimulation; amplitudes were comparable in all stimulus conditions. In healthy subjects, two non-overlapping factors accounted for the approximately 2-30.0 Hz and approximately 25.0-50.0 Hz signal components (representative of the low-frequency VEP and gamma oscillatory responses, respectively); the frequency of the approximately 25.0-50.0 Hz factor was lower after color than after contrast stimulation. The same factor structure was identified in patients, but the peak frequency of the factor on gamma activity was higher than in controls and did not vary with color-opponent stimulation. These observations indicate that stimulus-related gamma activity originates in cortex irrespective of the activated (magno-, parvo-, or konio-cellular) visual pathway, consistent with the suggested role in the phase coding of neuronal activities. Some dopaminergic modulation of gamma activity is conceivable.
Collapse
Affiliation(s)
- Walter G Sannita
- Department of Motor Science and Rehabilitation, University of Genova, I-16132, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Visual event-related potential changes in multiple system atrophy: Delayed N2 latency in selective attention to a color task. Parkinsonism Relat Disord 2009; 15:36-40. [DOI: 10.1016/j.parkreldis.2008.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/14/2008] [Accepted: 02/18/2008] [Indexed: 11/21/2022]
|
26
|
Barnes CS, Yan J, Wilmot GR. A negative electroretinogram (ERG) in a case of probable multiple system atrophy (MSA). Doc Ophthalmol 2008; 118:247-56. [PMID: 19023607 DOI: 10.1007/s10633-008-9156-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Recent articles have described negative ERGs in a small number of patients with cerebellar degeneration. Five of the previously reported seven cases were hereditary (2/5 had spinocerebellar ataxia-1 (SCA-1) gene mutations) and the other two were sporadic. We report a negative ERG in a case of cerebellar degeneration that differs significantly from earlier cases. The 65-year-old man had a 5-year history of ataxia, unsteady gait, orthostatic hypotension, and bladder and erectile dysfunction, with no family history of neurological or retinal disease. Visual acuity was 20/30 OD, 20/40 OS, but reportedly was never 20/20. His fundus exam showed optic nerve pallor, but otherwise was normal. Visual fields had enlarged blind spots but no central scotomas. Autofluorescence was normal. Photopic flash and 30-Hz ERG responses were normal. Rod b-waves were reduced and delayed. Standard flash a-waves were normal, but the b-waves were smaller than the a-waves. Blood tests were negative for Leber's hereditary optic neuropathy, dominant optic atrophy, and for expansions in SCA genes including SCA-1. This is only the third reported case of sporadic ataxia with a negative ERG. The patient's prominent autonomic dysfunction differs from the previous cases, and meets the clinical criteria for probable multiple system atrophy (MSA). This introduces another possible diagnosis in cases of negative ERGs with ataxia, and suggests that the visual system may be affected in MSA.
Collapse
Affiliation(s)
- Claire S Barnes
- Department of Ophthalmology, Emory University, 1365B Clifton Rd NE, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
27
|
The prodromal phase of sporadic Parkinson's disease: Does it exist and if so how long is it? Mov Disord 2008; 23:1799-807. [DOI: 10.1002/mds.22242] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Yenice O, Onal S, Midi I, Ozcan E, Temel A, I-Gunal D. Visual field analysis in patients with Parkinson's disease. Parkinsonism Relat Disord 2008; 14:193-8. [PMID: 17888714 DOI: 10.1016/j.parkreldis.2007.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 07/17/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND To evaluate visual field changes in patients with Parkinson's disease. METHODS Standard automated perimetry of 14 patients (28 eyes) with Parkinson's disease (PD) were compared with controls. PD patients with Unified Parkinson's Disease Rating Scale (UPDRS) score below 25 were included in the study. RESULTS Visual field indices including mean deviation (-4.69+/-2.72 vs. -1.71+/-1.30, p=0.0008), pattern standard deviation (3.94+/-1.94 vs. 2.30+/-0.41, p=0.001), and corrected pattern standard deviation (3.23+/-2.18 vs. 1.20+/-0.91, p=0.003), were significantly worse in patients with PD when compared with the control group. Bilateral glaucoma-like visual field defects were evident in six patients. CONCLUSION Parkinson's patients had worse visual field indices suggesting a common insult in the etiopathogenesis of nerve fiber layer damages observed in glaucoma and PD.
Collapse
Affiliation(s)
- Ozlem Yenice
- Department of Ophthalmology, Marmara University School of Medicine, 34660 Uskudar, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mouse models of optic nerve disease such as glaucoma, optic neuritis, ischemic optic neuropathy, and mitochondrial optic neuropathy are being developed at increasing rate to investigate specific pathophysiological mechanisms and the effect of neuroprotective treatments. The use of these models may be greatly enhanced by the availability of non-invasive methods able to monitor retinal ganglion cell (RGC) function longitudinally such as the Pattern Electroretinogram (PERG). While the use of the PERG as a tool to probe inner retina function in mammals is known since 25 years, relatively less information is available for the mouse. Here, the PERG technique and the main applications in the mouse are reviewed.
Collapse
Affiliation(s)
- Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|