1
|
Jericó D, Córdoba KM, Jiang L, Schmitt C, Morán M, Sampedro A, Alegre M, Collantes M, Santamaría E, Alegre E, Culerier C, de Mendoza AEH, Oyarzabal J, Martín MA, Peñuelas I, Ávila MA, Gouya L, Martini PGV, Fontanellas A. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:207-219. [PMID: 34458006 PMCID: PMC8368795 DOI: 10.1016/j.omtn.2021.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Variegate porphyria (VP) results from haploinsufficiency of protoporphyrinogen oxidase (PPOX), the seventh enzyme in the heme synthesis pathway. There is no VP model that recapitulates the clinical manifestations of acute attacks. Combined administrations of 2-allyl-2-isopropylacetamide and rifampicin in rabbits halved hepatic PPOX activity, resulting in increased accumulation of a potentially neurotoxic heme precursor, lipid peroxidation, inflammation, and hepatocyte cytoplasmic stress. Rabbits also showed hypertension, motor impairment, reduced activity of critical mitochondrial hemoprotein functions, and altered glucose homeostasis. Hemin treatment only resulted in a slight drop in heme precursor accumulation but further increased hepatic heme catabolism, inflammation, and cytoplasmic stress. Hemin replenishment did protect against hypertension, but it failed to restore action potentials in the sciatic nerve or glucose homeostasis. Systemic porphobilinogen deaminase (PBGD) mRNA administration increased hepatic PBGD activity, the third enzyme of the pathway, and rapidly normalized serum and urine porphyrin precursor levels. All features studied were improved, including those related to critical hemoprotein functions. In conclusion, the VP model recapitulates the biochemical characteristics and some clinical manifestations associated with severe acute attacks in humans. Systemic PBGD mRNA provided successful protection against the acute attack, indicating that PBGD, and not PPOX, was the critical enzyme for hepatic heme synthesis in VP rabbits.
Collapse
Affiliation(s)
- Daniel Jericó
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Karol M Córdoba
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Lei Jiang
- Moderna Inc., Cambridge, MA 02139, USA
| | - Caroline Schmitt
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | - María Morán
- Mitochondrial Diseases Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Sampedro
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Manuel Alegre
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Department of Clinical Neurophysiology, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| | - María Collantes
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain.,Nuclear Medicine Department, CUN, 31008 Pamplona, Spain
| | - Eva Santamaría
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Estíbaliz Alegre
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Department of Biochemistry, Service of Biochemistry, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| | - Corinne Culerier
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | | | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, CIMA-University of Navarra, 31008 Pamplona, Spain
| | - Miguel A Martín
- Mitochondrial Diseases Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iván Peñuelas
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain.,Nuclear Medicine Department, CUN, 31008 Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laurent Gouya
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | | | - Antonio Fontanellas
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Yan L, Wang P, Zhao C, Fan S, Lin H, Guo Y, Ma Z, Qiu L. Toxic responses of liver in Lateolabrax maculatus during hypoxia and re-oxygenation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105841. [PMID: 34022694 DOI: 10.1016/j.aquatox.2021.105841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Estuarine environmental have been reported to undergo significant fluctuations in oxygen concentrations with hypoxic conditions and subsequent re-oxygenation events being of significant concern for resident fish populations. In this study we assessed the toxicological effects of hypoxia and re-oxygenation on the liver of hypoxia-sensitive spotted sea bass (Lateolabrax maculatus) that were exposed to hypoxia (1.17 mg/L dissolved oxygen) for 12 h and then re-oxygenated for 12 h. The activities of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase in serum significantly increased under hypoxia (p < 0.05) and continued to increase during re-oxygenation (p < 0.05), indicating that normal liver function might be disrupted by hypoxia and might become worse during re-oxygenation for 12h. Total protein, albumin, and globulin levels in serum decreased under hypoxia but began to return to normal during re-oxygenation, showing that protein synthesis in the liver decreased during hypoxia but could be restored by re-oxygenation. We also used RNA-Seq technology to identify changes in gene expression in the liver during hypoxia and re-oxygenation. Transcriptome sequencing revealed that the hypoxia-inducible factor (HIF-1) signaling pathway, apoptosis, and purine metabolism transcripts were significantly enriched under hypoxia and re-oxygenation conditions. A total of 15 and 16 apoptosis-related genes were induced by hypoxia and re-oxygenation stress, respectively. The apoptosis index increased from the normal to the hypoxic condition and was highest under re-oxygenation. Additionally, 19 and 29 genes, that are involved in purine metabolism in the liver of L. maculatus during hypoxia and re-oxygenation, respectively, were dysregulated. Unexpectedly, the serum uric acid level significantly increased during hypoxia and significantly decreased under re-oxygenation, indicating the presence of purine metabolic disorder in the liver of L. maculatus. These results illustrate that hypoxia poses a pronounced threat to hepatocyte function in L. maculatus and that liver damage is difficult to reverse with 12 h of re-oxygenation, and it may actually become worse when re-oxygenation is established.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518000, PR China
| | - Yihui Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, P.R. China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510220, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510000, P.R. China.
| |
Collapse
|
3
|
Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget 2017; 8:65022-65041. [PMID: 29029409 PMCID: PMC5630309 DOI: 10.18632/oncotarget.17531] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Recent explosion of biological data brings a great challenge for the traditional methods. With increasing scale of large data sets, much advanced tools are required for the depth interpretation problems. As a rapid-developing technology, metabolomics can provide a useful method to discover the pathogenesis of diseases. This study was explored the dynamic changes of metabolic profiling in cells model and Balb/C nude-mouse model of prostate cancer, to clarify the therapeutic mechanism of berberine, as a case study. Here, we report the findings of comprehensive metabolomic investigation of berberine on prostate cancer by high-throughput ultra performance liquid chromatography-mass spectrometry coupled with pattern recognition methods and network pathway analysis. A total of 30 metabolite biomarkers in blood and 14 metabolites in prostate cancer cell were found from large-scale biological data sets (serum and cell metabolome), respectively. We have constructed a comprehensive metabolic characterization network of berberine to protect against prostate cancer. Furthermore, the results showed that berberine could provide satisfactory effects on prostate cancer via regulating the perturbed pathway. Overall, these findings illustrated the power of the ultra performance liquid chromatography-mass spectrometry with the pattern recognition analysis for large-scale biological data sets may be promising to yield a valuable tool that insight into the drug action mechanisms and drug discovery as well as help guide testable predictions.
Collapse
|
4
|
El Bana SM, Maher SE, Gaber AF, Aly SS. Serum and Urinary Malondialdehyde (MDA), Uric acid, and Protein as markers of perinatal asphyxia. Electron Physician 2016; 8:2614-9. [PMID: 27648187 PMCID: PMC5014499 DOI: 10.19082/2614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Perinatal asphyxia (PA) is among the leading causes of neonatal morbidity and death in neonatal intensive care units (NICUs). The aims of this research were to determine the concentrations of malondialdehyde (MDA), urine MDA, uric acid, and protein in the cord blood of neonates with perinatal asphyxia and to determine their relationship with the severity of perinatal asphyxia. METHODS This matched case-control study was conducted from October 2012 to March 2013. All of the cases and controls were selected from the Gynecology & Obstetrics Department and the NICUs, at Qous Central Hospital in Qena, Egypt. We allocated 20 full-term neonates who had perinatal asphyxia to the case group. Also, we selected 20 healthy neonates for the control group. The subjects were matched with respect to age and gender. At birth and 48 hours later, measurements were made of MDA in cord blood and urine, and uric acid, protein, and creatinine also were measured in both groups. The data were analyzed by SPSS, version 17, using the independent-samples t-test, ANOVA, Tukey's test, and Spearman's correlation coefficient. RESULTS At birth and 48 hr later, the newborns' with PA had significantly higher levels of MDA in the cord blood, mean urinary uric acid/creatinine (UUA:Cr), protein/creatinine (UP:Cr), and MDA/creatinine ratio (UMDA:Cr) than the controls; their PA levels were correlated with the degree of hypoxic-ischemic encephalopathy (HIE). The babies who died due to PA had significantly higher levels of cord blood MDA, and they also had higher UUA:Cr, UP:Cr, and UMDA:Cr ratios than the babies who survived. CONCLUSION The concentration of MDA in cord blood can be used as a diagnostic marker of oxidative stress in asphyxiated neonates. The ratios of the urinary excretion rates of uric acid, protein, and MDA to creatinine increased as the severity of perinatal asphyxia and associated brain damage increased.
Collapse
Affiliation(s)
| | - Sheren Esam Maher
- Assistant Professor, Department of Pediatric, Faculty of Medicine, Minia University, Minia, Egypt
| | - Amani Fawzy Gaber
- Ph.D., Department of Pediatric, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sanaa Shaker Aly
- Lecturer, Department of Clinical and Chemical Pathology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
5
|
Farinha JB, Dos Santos DL, Bresciani G, Bard LF, de Mello F, Stefanello ST, Courtes AA, Soares F. Weight loss is not mandatory for exercise-induced effects on health indices in females with metabolic syndrome. Biol Sport 2015; 32:109-14. [PMID: 26028810 PMCID: PMC4296212 DOI: 10.5604/20831862.1134313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate the impact of moderate aerobic training on functional, anthropometric, biochemical, and health-related quality of life (HRQOL) parameters on women with metabolic syndrome (MS). Fifteen untrained women with MS performed moderate aerobic training for 15 weeks, without modifications of dietary behaviours. Functional, anthropometric, biochemical, control diet record and HRQOL parameters were assessed before and after the training. Despite body weight maintenance, the patients presented decreases in waist circumference (P = 0.001), number of MS components (P = 0.014), total cholesterol (P = 0.049), HDL cholesterol (P = 0.004), LDL cholesterol (P = 0.027), myeloperoxidase activity (P = 0.002) and thiobarbituric acid-reactive substances levels (P = 0.006). There were no differences in total energy, carbohydrate, protein and lipid intake pre- and post-training. Furthermore, improvements in the HRQOL subscales of physical functioning (P = 0.03), role-physical (P = 0.039), bodily pain (P = 0.048), general health (P = 0.046) and social functioning scoring (P = 0.011) were reported. Despite the absence of weight loss, aerobic training induced beneficial effects on functional, anthropometric, biochemical and HRQOL parameters in women with MS.
Collapse
Affiliation(s)
- J B Farinha
- Departamento de Métodos e Técnicas Desportivas, Centro de Eduçãgao Física e Desportos, Universidade Federal de Santa Maria, Brazil
| | - D L Dos Santos
- Departamento de Métodos e Técnicas Desportivas, Centro de Eduçãgao Física e Desportos, Universidade Federal de Santa Maria, Brazil
| | - G Bresciani
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil ; Universidad Autónoma de Chile, Chile
| | - L F Bard
- Departamento de Métodos e Técnicas Desportivas, Centro de Eduçãgao Física e Desportos, Universidade Federal de Santa Maria, Brazil
| | - F de Mello
- Departamento de Métodos e Técnicas Desportivas, Centro de Eduçãgao Física e Desportos, Universidade Federal de Santa Maria, Brazil
| | - S T Stefanello
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil
| | - A A Courtes
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil
| | - Faa Soares
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
6
|
Neuroinflammation after neonatal hypoxia–ischemia is associated with alterations in the purinergic system: adenosine deaminase 1 isoenzyme is the most predominant after insult. Mol Cell Biochem 2015; 403:169-77. [DOI: 10.1007/s11010-015-2347-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
|
7
|
Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory. Neuroscience 2014; 284:247-259. [PMID: 25305666 DOI: 10.1016/j.neuroscience.2014.08.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
Abstract
Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference memory in the Morris water maze task. Compared to control subjects, anoxic animals exhibited increased latencies and path lengths to reach the platform, as well as decreased searching specifically for the platform location. In contrast, no significant differences were observed for swimming speeds and frequency within the target quadrant. Together, these behavioral results indicate that the poorer performance by anoxic subjects is related to spatial memory deficits and not to sensory or motor deficits. Therefore, this model of neonatal anoxia in rats induces hippocampal changes that result in cell losses and impaired hippocampal function, and these changes are likely related to spatial memory deficits in adulthood.
Collapse
|
8
|
Lou BS, Wu PS, Liu Y, Wang JS. Effects of Acute Systematic Hypoxia on Human Urinary Metabolites Using LC-MS-Based Metabolomics. High Alt Med Biol 2014; 15:192-202. [DOI: 10.1089/ham.2013.1130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Pei-Shan Wu
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Yitong Liu
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science and Center for Healthy Aging Research, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
9
|
Caffeine intake may modulate inflammation markers in trained rats. Nutrients 2014; 6:1678-90. [PMID: 24763113 PMCID: PMC4011059 DOI: 10.3390/nu6041678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 12/25/2022] Open
Abstract
Caffeine is presented in many commercial products and has been proven to induce ergogenic effects in exercise, mainly related to redox status homeostasis, inflammation and oxidative stress-related adaptation mechanisms. However, most studies have mainly focused on muscle adaptations, and the role of caffeine in different tissues during exercise training has not been fully described. The aim of this study was therefore, to analyze the effects of chronic caffeine intake and exercise training on liver mitochondria functioning and plasma inflammation markers. Rats were divided into control, control/caffeine, exercise, and exercise/caffeine groups. Exercise groups underwent four weeks of swimming training and caffeine groups were supplemented with 6 mg/kg/day. Liver mitochondrial swelling and complex I activity, and plasma myeloperoxidase (MPO) and acetylcholinesterase (AChE) activities were measured. An anti-inflammatory effect of exercise was evidenced by reduced plasma MPO activity. Additionally, caffeine intake alone and combined with exercise decreased the plasma AChE and MPO activities. The per se anti-inflammatory effect of caffeine intake should be highlighted considering its widespread use as an ergogenic aid. Therefore, caffeine seems to interfere on exercise-induced adaptations and could also be used in different exercise-related health treatments.
Collapse
|
10
|
Evaluation of acetylcholinesterase and adenosine deaminase activities in brain and erythrocytes and proinflammatory cytokine levels in rats submitted to neonatal hypoxia-ischemia model. Mol Cell Biochem 2013; 378:247-55. [DOI: 10.1007/s11010-013-1615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
11
|
Shenfu injection attenuates neonatal hypoxic-ischemic brain damage in rat. Neurol Sci 2013; 34:1571-4. [DOI: 10.1007/s10072-013-1288-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
|