1
|
Wang Z, Fan J, Wang J, Li Y, Duan D, Du G, Wang Q. Chronic cerebral hypoperfusion induces long-lasting cognitive deficits accompanied by long-term hippocampal silent synapses increase in rats. Behav Brain Res 2016; 301:243-52. [PMID: 26756439 DOI: 10.1016/j.bbr.2015.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Synaptic dysfunction underlies cognitive deficits induced by chronic cerebral hypoperfusion (CCH). There are silent synapses in neural circuits, but the effect of CCH on silent synapses is unknown. The present study was designed to explore learning and memory deficits and dynamic changes in silent synapses by direct visualization in a rat model of CCH. Adult male Sprague-Dawley rats were subjected to permanent bilateral common carotid artery occlusion (BCCAO) to reproduce CCH. Learning and memory effects were examined at 1, 4, 12, and 24 weeks after BCCAO. In addition, immunofluorescent confocal microscopy was used to detect AMPA and N-methyl-d-aspartate receptors colocalized with synaptophysin, and Golgi-Cox staining was used to observe dendritic spine density. We found that BCCAO rats exhibited recognition memory deficits from 4 weeks; spatial learning and memory, as well as working memory impairment began at 1 week and persistent to 24 weeks after surgery. Following BCCAO, the percentage of silent synapses increased by 29.81-55.08% compared with the controls at different time points (P<0.001). Compared with control groups, dendritic spine density in the CA1 region of BCCAO groups significantly decreased (P<0.001). Thus, the present study suggests that CCH can induce long-lasting cognitive deficits and long-term increase in the number of silent synapses. Furthermore, the decrease in dendritic spine density was correlated with the decrease in the number of functional synapses. The results suggest a potential mechanism by which CCH can induce learning and memory deficits.
Collapse
Affiliation(s)
- Zhiqiang Wang
- The Graduate Management Team, The Third Military Medical University, Chongqing 400038, China; Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Jin Fan
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Jian Wang
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yuxia Li
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Dan Duan
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Guo Du
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Qingsong Wang
- Department of Neurology, Chengdu Military General Hospital, Chengdu 610083, China.
| |
Collapse
|
2
|
Li H, Li X, Smerin SE, Zhang L, Jia M, Xing G, Su YA, Wen J, Benedek D, Ursano R. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD. Front Neurol 2014; 5:164. [PMID: 25295026 PMCID: PMC4172054 DOI: 10.3389/fneur.2014.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/15/2014] [Indexed: 12/19/2022] Open
Abstract
The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.
Collapse
Affiliation(s)
- He Li
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center , Washington, DC , USA
| | - Stanley E Smerin
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Lei Zhang
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Min Jia
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Guoqiang Xing
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Yan A Su
- Department of Gene and Protein Biomarkers, GenProMarkers , Rockville, MD , USA
| | - Jillian Wen
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - David Benedek
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Robert Ursano
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
3
|
Sarkaki A, Fathimoghaddam H, Mansouri SMT, Korrani MS, Saki G, Farbood Y. Gallic acid improves cognitive, hippocampal long-term potentiation deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Pak J Biol Sci 2014; 17:978-990. [PMID: 26031016 DOI: 10.3923/pjbs.2014.978.990] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Abstract: Cerebral Hypoperfusion Ischemia (CHI) has important role in neuronal damage and behavioral deficits, including memory and Long-term Potentiation (LTP) impairment. Protective effects of Gallic Acid (GA) on memory, hippocampus LTP and cell viability were examined in permanent bilateral common carotid artery occlusion in rats. Animals were divided into 9 groups: Control (Cont); sham operated (Sho); Cerebral Hypoperfusion Ischemia (CHI); CHI received normal saline (CHI +Veh); CHI treated with different doses gallic acid (50, 100, 200 mg kg(-1) for 5 days before and 5 days after CHI induction, orally); CHI treated with phenytoin (50 mg kg(-1), ip) (CHI+Phe); and sham operated received 100 mg kg(-1), orally (Sho+GA100). CHI was induced by bilateral common carotid artery occlusion (2VO). Behavioral, electrophysiological and histological evaluations were performed. Data were analyzed by one-way and repeated measures ANOVA followed by tukey's post-hoc test. GA improved passive avoidance memory, hippocampal LTP and cell. viability in hippocampus and cortex of ischemic rats significantly (p < 0.01). The results suggest that gallic acid via its antioxidative and free radicals scavenging properties attenuates CHI induced behavioral and electrophysiological deficits and has significant protective effect on brain cell viability. Dose of 100 mg kg(-1) GA has affected the ischemic but not intact rats and its effect was more potent significantly than phenytoin, a routine drug for ischemic subjects.
Collapse
|
4
|
Melo MCSC, Gadelha D, Mascena GV, Oliveira TKB, Brandt CT. Translational realistic expectations of chronic cerebral hypoxemia in rat model after bilateral commom carotid artery ligation. Neurocognitive aspects. Acta Cir Bras 2014; 29:53-8. [DOI: 10.1590/s0102-86502014000100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 12/16/2013] [Indexed: 11/21/2022] Open
|
5
|
Villa RF, Ferrari F, Gorini A. Functional Proteomics Related to Energy Metabolism of Synaptosomes from Different Neuronal Systems of Rat Hippocampus during Aging. J Proteome Res 2013; 12:5422-35. [DOI: 10.1021/pr400834g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roberto F. Villa
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Federica Ferrari
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Antonella Gorini
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| |
Collapse
|