1
|
Flores AC, Zhang X, Kris-Etherton PM, Sliwinski MJ, Shearer GC, Gao X, Na M. Metabolomics and Risk of Dementia: A Systematic Review of Prospective Studies. J Nutr 2024; 154:826-845. [PMID: 38219861 DOI: 10.1016/j.tjnut.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The projected increase in the prevalence of dementia has sparked interest in understanding the pathophysiology and underlying causal factors in its development and progression. Identifying novel biomarkers in the preclinical or prodromal phase of dementia may be important for predicting early disease risk. Applying metabolomic techniques to prediagnostic samples in prospective studies provides the opportunity to identify potential disease biomarkers. OBJECTIVE The objective of this systematic review was to summarize the evidence on the associations between metabolite markers and risk of dementia and related dementia subtypes in human studies with a prospective design. DESIGN We searched PubMed, PsycINFO, and Web of Science databases from inception through December 8, 2023. Thirteen studies (mean/median follow-up years: 2.1-21.0 y) were included in the review. RESULTS Several metabolites detected in biological samples, including amino acids, fatty acids, acylcarnitines, lipid and lipoprotein variations, hormones, and other related metabolites, were associated with risk of developing dementia. Our systematic review summarized the adjusted associations between metabolites and dementia risk; however, our findings should be interpreted with caution because of the heterogeneity across the included studies and potential sources of bias. Further studies are warranted with well-designed prospective cohort studies that have defined study populations, longer follow-up durations, the inclusion of additional diverse biological samples, standardization of techniques in metabolomics and ascertainment methods for diagnosing dementia, and inclusion of other related dementia subtypes. CONCLUSIONS This study contributes to the limited systematic reviews on metabolomics and dementia by summarizing the prospective associations between metabolites in prediagnostic biological samples with dementia risk. Our review discovered additional metabolite markers associated with the onset of developing dementia and may help aid in the understanding of dementia etiology. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (https://www.crd.york.ac.uk/prospero/; registration ID: CRD42022357521).
Collapse
Affiliation(s)
- Ashley C Flores
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States; Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Greg C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Xiang Gao
- School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
2
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
3
|
Alshamrani M. Recent Trends in Active and Passive Immunotherapies of Alzheimer's Disease. Antibodies (Basel) 2023; 12:41. [PMID: 37366656 DOI: 10.3390/antib12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
In the elderly, a debilitating condition known as dementia, which is a major health concern, is caused by Alzheimer's disease (AD). Despite promising advances by researchers, there is currently no way to completely cure this devastating disease. It is illustrated by the deposition of amyloid β-peptide (Aβ) plaques that are followed by neural dysfunction and cognitive decline. Responses against AD activate an immune system that contributes to and accelerates AD pathogenesis. Potential efforts in the field of pathogenesis have prompted researchers to explore novel therapies such as active and passive vaccines against Aβ proteins (Aβ immunotherapy), intravenous immunoglobulin, and tau immunotherapy, as well as targets that include microglia and several cytokines for the treatment of AD. Aims are now underway by experts to begin immunotherapies before the clinical manifestation, which is made possible by improving the sensitivity of biomarkers used for the diagnosis of AD to have better outcome measures. This review provides an overview of approved immunotherapeutic strategies for AD and those currently being investigated in clinical trials. We examine their mechanisms of action and discuss the potential perspectives and challenges associated with immunotherapies for AD.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
Mukherji D, Mukherji M, Mukherji N. Early detection of Alzheimer's disease using neuropsychological tests: a predict-diagnose approach using neural networks. Brain Inform 2022; 9:23. [PMID: 36166157 PMCID: PMC9515292 DOI: 10.1186/s40708-022-00169-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is a slowly progressing disease for which there is no known therapeutic cure at present. Ongoing research around the world is actively engaged in the quest for identifying markers that can help predict the future cognitive state of individuals so that measures can be taken to prevent the onset or arrest the progression of the disease. Researchers are interested in both biological and neuropsychological markers that can serve as good predictors of the future cognitive state of individuals. The goal of this study is to identify non-invasive, inexpensive markers and develop neural network models that learn the relationship between those markers and the future cognitive state. To that end, we use the renowned Alzheimer’s Disease Neuroimaging Initiative (ADNI) data for a handful of neuropsychological tests to train Recurrent Neural Network (RNN) models to predict future neuropsychological test results and Multi-Level Perceptron (MLP) models to diagnose the future cognitive states of trial participants based on those predicted results. The results demonstrate that the predicted cognitive states match the actual cognitive states of ADNI test subjects with a high level of accuracy. Therefore, this novel two-step technique can serve as an effective tool for the prediction of Alzheimer’s disease progression. The reliance of the results on inexpensive, non-invasive tests implies that this technique can be used in countries around the world including those with limited financial resources.
Collapse
|
5
|
Behl T, Kaur I, Sehgal A, Singh S, Albarrati A, Albratty M, Najmi A, Meraya AM, Bungau S. The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease. Biomed Pharmacother 2022; 153:113337. [PMID: 35780617 DOI: 10.1016/j.biopha.2022.113337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
The expeditious advancement of Alzheimer's Disease (AD) is a threat to the global healthcare system, that is further supplemented by therapeutic failure. The prevalence of this disorder has been expected to quadrupole by 2050, thereby exerting a tremendous economic pressure on medical sector, worldwide. Thus, there is a dire need of a change in conventional approaches and adopt a novel methodology of disease prevention, treatment and diagnosis. Precision medicine offers a personalized approach to disease management, It is dependent upon genetic, environmental and lifestyle factors associated with the individual, aiding to develop tailored therapeutics. Precision Medicine Initiatives are launched, worldwide, to facilitate the integration of personalized models and clinical medicine. The review aims to provide a comprehensive understanding of the neuroinflammatory processes causing AD, giving a brief overview of the disease interventions. This is further followed by the role of precision medicine in AD, constituting the genetic perspectives, operation of personalized form of medicine and optimization of clinical trials with the 3 R's, showcasing an in-depth understanding of this novel approach in varying aspects of the healthcare industry, to provide an opportunity to the global AD researchers to elucidate suitable therapeutic regimens in clinically and pathologically complex diseases, like AD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
6
|
Parker AF, Ohlhauser L, Scarapicchia V, Smart CM, Szoeke C, Gawryluk JR. A Systematic Review of Neuroimaging Studies Comparing Individuals with Subjective Cognitive Decline to Healthy Controls. J Alzheimers Dis 2022; 86:1545-1567. [DOI: 10.3233/jad-215249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Individuals with subjective cognitive decline (SCD) are hypothesized to be the earliest along the cognitive continuum between healthy aging and Alzheimer’s disease (AD), although more research is needed on this topic. Given that treatment approaches may be most effective pre-clinically, a primary objective of emerging research is to identify biological markers of SCD using neuroimaging methods. Objective: The current review aimed to comprehensively present the neuroimaging studies on SCD to date. Methods: PubMed and PsycINFO databases were searched for neuroimaging studies of individuals with SCD. Quality assessments were completed using the Appraisal tool for Cross-Sectional Studies. Results: In total, 62 neuroimaging studies investigating differences between participants with SCD and healthy controls were identified. Specifically, the number of studies were as follows: 36 MRI, 6 PET, 8 MRI/PET, 4 EEG, 7 MEG, and 1 SPECT. Across neuroimaging modalities, 48 of the 62 included studies revealed significant differences in brain structure and/or function between groups. Conclusion: Neuroimaging methods can identify differences between healthy controls and individuals with SCD. However, inconsistent results were found within and between neuroimaging modalities. Discrepancies across studies may be best accounted for by methodological differences, notably variable criteria for SCD, and differences in participant characteristics and risk factors for AD. Clinic based recruitment and cross-sectional study design were common and may bias the literature. Future neuroimaging investigations of SCD should consistently incorporate the standardized research criteria for SCD (as recommended by the SCD-Initiative), include more details of their SCD sample and their symptoms, and examine groups longitudinally.
Collapse
Affiliation(s)
- Ashleigh F. Parker
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Lisa Ohlhauser
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Colette M. Smart
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Cassandra Szoeke
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Jodie R. Gawryluk
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, BC, Canada
| |
Collapse
|
7
|
Shen L, Xia S, Zhang H, Yao F, Liu X, Zhao Y, Ying M, Iqbal J, Liu Q. Precision Medicine: Role of Biomarkers in Early Prediction and Diagnosis of Alzheimer’s Disease. Mol Med 2019. [DOI: 10.5772/intechopen.82035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
Goudey B, Fung BJ, Schieber C, Faux NG. A blood-based signature of cerebrospinal fluid Aβ 1-42 status. Sci Rep 2019; 9:4163. [PMID: 30853713 PMCID: PMC6409361 DOI: 10.1038/s41598-018-37149-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
It is increasingly recognized that Alzheimer's disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1-42 (Aβ1-42) may be an earlier indicator of Alzheimer's disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual's CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ1-42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ1-42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ1-42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ1-42 levels and that the resulting model also validates reasonably across PET Aβ1-42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1-42 status, the earliest risk indicator for AD, with high accuracy.
Collapse
Affiliation(s)
- Benjamin Goudey
- IBM Research Australia, Carlton, Victoria, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Computing and Information System, The University of Melbourne, Parkville, Victoria, Australia
| | - Bowen J Fung
- IBM Research Australia, Carlton, Victoria, Australia
- School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Noel G Faux
- IBM Research Australia, Carlton, Victoria, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Abstract
SUMMARYAlzheimer's disease pathology accumulates years before the onset of clinical symptoms and has been termed ‘preclinical dementia’. Biomarkers have been developed to detect this pathology – namely, brain amyloid deposition and markers of neurodegeneration. In this article we describe these biomarkers and review the evidence for their clinical use in predicting risk both in the cognitively ‘normal’ and in those who already have established cognitive decline. We also discuss the limitations and ethical considerations of these tests and consider whether we should start incorporating Alzheimer's disease biomarkers into clinical practice. We find that, because many cognitively healthy people will have Alzheimer's pathology, and it is not clear whether this does help predict future risk of Alzheimer's disease, diagnosing preclinical dementia carries numerous ethical implications and is currently not being advocated outside research settings.LEARNING OBJECTIVES•Understand the concepts of preclinical and prodromal Alzheimer's disease and the use of biomarkers in this context•Analyse the supporting evidence for the use of biomarkers in prodromal and preclinical dementia•Apply this information to everyday clinical practiceDECLARATION OF INTERESTJ. C. H. works in the Research Institute for the Care of Older People (RICE), which undertakes clinical drug trials for drug companies. He is a sub-investigator on a number of trials (some of which involve neuroimaging and biomarkers) and principal investigator and chief investigator on two trials (neither of which involves biomarkers). All of these trials concern Alzheimer's disease or dementia. He does not receive any direct personal payment from the trials: the payment goes to RICE, which does, however, fund almost half of his post. RICE is an independent charity and separate from the University of Bristol.
Collapse
|
10
|
Lombardi G, Polito C, Berti V, Ferrari C, Lucidi G, Bagnoli S, Piaceri I, Nacmias B, Pupi A, Sorbi S. Biomarkers study in atypical dementia: proof of a diagnostic work-up. Neurol Sci 2018; 39:1203-1210. [PMID: 29651720 DOI: 10.1007/s10072-018-3400-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND An early differentiation between Alzheimer's Disease (AD) and other dementias is crucial for an adequate patients' management, albeit it may result difficult for the occurrence of "atypical presentations." Current diagnostic criteria recognize the importance of biomarkers for AD diagnosis, but still an optimal diagnostic work-up isn't available. OBJECTIVE Evaluate the utility and reproducibility of biomarkers and propose an "optimal" diagnostic work-up in atypical dementia. METHODS (1) a retrospective selection of "atypical dementia cases"; (2) a repetition of diagnostic assessment by two neurologists following two different diagnostic work-ups, each consisting of multiple steps; (3) a comparison between diagnostic accuracy and confidence reached at each step by both neurologists and evaluation of the inter-rater agreement. RESULTS In AD, regardless of the undertaken diagnostic work-up, a significant gain in accuracy was reached by both neurologists after the second step, whereas in frontotemporal dementia (FTD), adding subsequent steps was not always sufficient to increase significantly the baseline accuracy. A relevant increment in diagnostic confidence was detectable after studying pathophysiological markers in AD, and after assessing brain metabolism in FTD. The inter-rater agreement was higher at the second step for the AD group when the pathophysiological markers were available and for the FTD group when the results of FDG-PET were accessible. CONCLUSIONS In atypical cases of dementia, biomarkers significantly raise diagnostic accuracy, confidence, and agreement. This study introduces a proof of diagnostic work-up that combines imaging and CSF biomarkers and suggests distinct ways to proceed on the basis of a greater diagnostic likelihood.
Collapse
Affiliation(s)
- Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
| | - Cristina Polito
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," Nuclear Medicine Unit, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Valentina Berti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," Nuclear Medicine Unit, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Giulia Lucidi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.,IRCCS Don Gnocchi, via di Scandicci 269, 50143, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Alberto Pupi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," Nuclear Medicine Unit, University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.,IRCCS Don Gnocchi, via di Scandicci 269, 50143, Florence, Italy
| |
Collapse
|
11
|
Kouzuki M, Suzuki T, Nagano M, Nakamura S, Katsumata Y, Takamura A, Urakami K. Comparison of olfactory and gustatory disorders in Alzheimer's disease. Neurol Sci 2017; 39:321-328. [PMID: 29128987 DOI: 10.1007/s10072-017-3187-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Patients with Alzheimer's disease (AD) develop olfactory and gustatory disorders. However, the order of failure and relevance of the pathophysiology are unclear. We compared olfactory identification and whole mouth gustation in patients with AD to those with mild cognitive impairment (MCI) and to healthy controls (HC) and assessed correlations with pathophysiology. Patients with AD (n = 40), MCI (n = 34), and HC (n = 40) were recruited. We performed the Odor Stick Identification Test for Japanese (OSIT-J), gustatory test by the intraoral dropping method using taste solutions, Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognitive subscale Japanese version (ADAS-J cog), Touch Panel-type Dementia Assessment Scale (TDAS), and measurement of amyloid β (Aβ) 42 and phosphorylated tau (p-tau) 181 levels in cerebrospinal fluid (CSF). Patients with AD and MCI had lower OSIT-J scores than did the HC. The OSIT-J score was correlated with the MMSE, ADAS-J cog, TDAS, and Aβ42 results. There were no significant differences in the gustatory test scores among the three groups. The gustatory test score was only correlated with the MMSE, ADAS-J cog, and TDAS results. Olfactory function decreased in AD and MCI patients and was associated with CSF biomarker levels and cognitive disorders. The results suggest that olfactory function is impaired in early stage of AD. Gustatory function was not correlated with CSF biomarkers, which suggests that it may not be impaired in early stage of AD.
Collapse
Affiliation(s)
- Minoru Kouzuki
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan.
| | - Tetsuya Suzuki
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan
| | - Masaya Nagano
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan
| | - Syouta Nakamura
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan
| | - Yuto Katsumata
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan
| | - Ayumi Takamura
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan
| | - Katsuya Urakami
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago, 683-8503, Japan
| |
Collapse
|
12
|
Abstract
A compelling need in the field of neurodegenerative diseases is the development and validation of biomarkers for early identification and differential diagnosis. The availability of positron emission tomography (PET) neuroimaging tools for the assessment of molecular biology and neuropathology has opened new venues in the diagnostic design and the conduction of new clinical trials. PET techniques, allowing the in vivo assessment of brain function and pathology changes, are increasingly showing great potential in supporting clinical diagnosis also in the early and even preclinical phases of dementia. This review will summarize the most recent evidence on fluorine-18 fluorodeoxyglucose-, amyloid -, tau -, and neuroinflammation - PET tools, highlighting strengths and limitations and possible new perspectives in research and clinical applications. Appropriate use of PET tools is crucial for a prompt diagnosis and target evaluation of new developed drugs aimed at slowing or preventing dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
13
|
Hajjari SN, Mehdizadeh M, Sadigh-Eteghad S, Shanehbandi D, Teimourian S, Baradaran B. Secretases-related miRNAs in Alzheimer’s disease: new approach for biomarker discovery. Neurol Sci 2017; 38:1921-1926. [DOI: 10.1007/s10072-017-3086-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 10/25/2022]
|
14
|
Björkesten J, Enroth S, Shen Q, Wik L, Hougaard DM, Cohen AS, Sörensen L, Giedraitis V, Ingelsson M, Larsson A, Kamali-Moghaddam M, Landegren U. Stability of Proteins in Dried Blood Spot Biobanks. Mol Cell Proteomics 2017; 16:1286-1296. [PMID: 28501802 PMCID: PMC5500761 DOI: 10.1074/mcp.ra117.000015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/18/2017] [Indexed: 01/15/2023] Open
Abstract
An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. Ninety-two proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4 °C or -24 °C.Our main findings were that (1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34 and 76% of the analyzed proteins at +4 °C and -24 °C, respectively), whereas levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at -24 °C compared with at +4 °C, as the median protein abundance had decreased to 80 and 93% of starting levels after 10 years of storage at +4 °C or -24 °C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers.
Collapse
Affiliation(s)
- Johan Björkesten
- From the ‡Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- From the ‡Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Qiujin Shen
- From the ‡Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lotta Wik
- From the ‡Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David M Hougaard
- §Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Arieh S Cohen
- §Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Lene Sörensen
- ¶Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Vilmantas Giedraitis
- ‖Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- ‖Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- **Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- From the ‡Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- From the ‡Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
15
|
|
16
|
Sengupta U, Portelius E, Hansson O, Farmer K, Castillo‐Carranza D, Woltjer R, Zetterberg H, Galasko D, Blennow K, Kayed R. Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Ann Clin Transl Neurol 2017; 4:226-235. [PMID: 28382304 PMCID: PMC5376754 DOI: 10.1002/acn3.382] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/26/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE With an increasing incidence of Alzheimer's disease (AD) and neurodegenerative tauopathies, there is an urgent need to develop reliable biomarkers for the diagnosis and monitoring of the disease, such as the recently discovered toxic tau oligomers. Here, we aimed to demonstrate the presence of tau oligomers in the cerebrospinal fluid (CSF) of patients with cognitive deficits, and to determine whether tau oligomers could serve as a potential biomarker for AD. METHODS A multicentric collaborative study involving a double-blinded analysis with a total of 98 subjects with moderate to severe AD (N = 41), mild AD (N = 31), and nondemented control subjects (N = 26), and two pilot studies of 33 total patients with AD (N = 19) and control (N = 14) subjects were performed. We carried out biochemical assays to measure oligomeric tau from CSF of these patients with various degrees of cognitive impairment as well as cognitively normal controls. RESULTS Using a highly reproducible indirect ELISA method, we found elevated levels of tau oligomers in AD patients compared to age-matched controls. Western blot analysis confirmed the presence of oligomeric forms of tau in CSF. In addition, the ratio of oligomeric to total tau increased in the order: moderate to severe AD, mild AD, and controls. CONCLUSION These assays are suitable for the analysis of human CSF samples. These results here suggest that CSF tau oligomer measurements could be optimized and added to the panel of CSF biomarkers for the accurate and early detection of AD.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Erik Portelius
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLund Sweden
| | - Kathleen Farmer
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Diana Castillo‐Carranza
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Randall Woltjer
- Department of Department of PathologyOregon Health & Science UniversityPortlandOregon
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
- Department of Molecular NeuroscienceUCL Institute of NeurologyQueen SquareLondonWC1N 3BGUnited Kingdom
| | - Douglas Galasko
- Department of NeuroscienceUniversity of California San DiegoSan DiagoCalifornia
| | - Kaj Blennow
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|