Li JJ, Shi L, Chen YC, Zhu GY, Zhang JG. Ultrahigh-Magnitude Brain Magnetic Resonance Imaging Scan on Rhesus Monkeys With Implanted Deep Brain Stimulation Hardware.
Neuromodulation 2017;
21:168-175. [PMID:
29219219 DOI:
10.1111/ner.12735]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND
Patients with implanted deep brain stimulation (DBS) hardware are prohibited from undergoing magnetic resonance imaging (MRI) scans at magnitudes greater than 1.5 T to avoid potential MRI-related heating injury. Whether DBS devices are compatible with higher field MRI scanning is unknown. This study aimed to investigate whether 7.0 T and 3.0 T MRI scans can be safely performed on rhesus monkeys with implanted DBS devices.
METHODS
Eight male rhesus monkeys were included in this study and stereotactically implanted with DBS devices in the left anterior thalamus. Two weeks after DBS device implantation, 7.0 T and 3.0 T MRI scans were performed. The monkeys were observed for 72 hours. After explantation of the DBS system, 7.0 T MRI was repeated to determine potential lesions. Hematoxylin and eosin staining and transmission electron microscopy were conducted to assess pathological alterations.
RESULTS
In both groups, the monkeys exhibited no behavioral changes related to neurological deficits. Post-explantation MRI showed no malacia foci surrounding the DBS tracks. Additionally, neither hematoxylin and eosin staining nor transmission electron microscopy showed clear injury near the DBS leads.
CONCLUSION
These results indicate that no obvious heating injury was induced in the tissue surrounding the DBS leads by the 7.0 T and 3.0 T MRI scans. Although the results of this study may not be generalizable, these data suggest that patients with implanted DBS devices can undergo even 7.0 T MRI without risk of brain injury.
Collapse