1
|
Huang XF, Hao XQ, Yin XX, Ren L, Wang D, Jin F, Tan LN, Liang ZH, Song CL. Functional connectivity alterations in the frontoparietal network and sensorimotor network are associated with behavioral heterogeneity in blepharospasm. Front Neurol 2023; 14:1273935. [PMID: 38020657 PMCID: PMC10668333 DOI: 10.3389/fneur.2023.1273935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Primary blepharospasm (BSP) is a clinically heterogeneous disease that manifests not only as spasmodic closure of the eyelids but also sometimes with apraxia of eyelid opening (AEO). This cross-sectional study aimed to investigate differences in the neural mechanisms of isolated BSP and BSP-associated AEO subtypes, which may reveal the pathophysiology underlying different phenotypes. Methods A total of 29 patients manifested as isolated BSP, 17 patients manifested as BSP associated with AEO, and 28 healthy controls underwent resting-state functional near-infrared spectroscopy (fNIRS). We assessed functional connectivity (FC) between regions of interest (ROIs) in the fronto-parietal control network (PFCN) and sensorimotor network (SMN). We also examined the relationship between altered FC and behavioral data. Results In the FPCN, ROI- analyses showed decreased FC between the left premotor cortex and supramarginal gyrus in the BSP with AEO group compared to the isolated BSP group. In the SMN, both subgroups showed hypoconnectivity of the left premotor cortex with the right primary motor cortex, primary sensory cortex, and somatosensory association cortex. This hypoconnectivity was positively correlated with the total number of botulinum toxin A treatments, which suggests that long-term botulinum toxin A treatment may modulate motor sequence planning and coordination. Conclusion These findings showed different connectivity alterations in neural networks associated with motor and cognitive control among different behavioral phenotypes of BSP. The identification of specific alterations in various networks that correspond to clinical heterogeneity may inform the identification of potential biomarkers for early diagnosis and personalized neuromodulation targets for treating different BSP subphenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhan-Hua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chun-Li Song
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Medina A, Nilles C, Martino D, Pelletier C, Pringsheim T. The prevalence of idiopathic or inherited isolated dystonia: a systematic review and meta‐analysis. Mov Disord Clin Pract 2022; 9:860-868. [PMID: 36247920 PMCID: PMC9547134 DOI: 10.1002/mdc3.13524] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background A systematic review of epidemiological studies of primary dystonia from 1985 and 2010 found an overall prevalence of 16.43 per 100,000 (95% CI = 12.09–22.32). Methods We performed a systematic review of studies from 2010 and 2022 to determine if there are important differences in epidemiology between these time periods. Results Nineteen studies were included. Incidence of cervical dystonia, blepharospasm, and oromandibular dystonia were each reported in one study; one study reported incidence for all adult onset idiopathic focal dystonias combined. Using data from 11 studies, we performed random effects meta‐analyses of the prevalence of cervical dystonia (9.95 per 100,000; 95% CI = 3.51–28.17), blepharospasm (2.82 per 100,000; 95% CI = 1.12–7.12), laryngeal dystonia (0.40 per 100,000; 95% CI = 0.09–1.83), upper limb dystonia (1.27 per 100,000; 95% CI = 0.36–4.52), oromandibular dystonia (0.57 per 100,000; 95% CI = 0.15–2.15), and idiopathic or inherited isolated dystonia all subtypes combined (30.85 per 100,000; 95% CI = 5.06–187.74). All studies reported more cases of dystonia in females. There was no significant difference in prevalence by subgroup analysis based on time of study publication (1985–2010 vs. 2010–2022). Subgroup analysis of differences in prevalence by dystonia subtype by continent using all studies published (1985–2022) revealed significant regional differences in the prevalence of cervical and laryngeal dystonia. Conclusion The incidence and prevalence of idiopathic or inherited isolated dystonia in the last decade was not significantly different from earlier reports. Population‐based studies across multiple geographic areas are needed to obtain a clearer understanding of the epidemiology of this condition.
Collapse
Affiliation(s)
- Alex Medina
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Christelle Nilles
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
- Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| | | | - Tamara Pringsheim
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
- Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
- Department of Psychiatry, Pediatrics, Community Health Sciences University of Calgary Calgary Alberta Canada
| |
Collapse
|
3
|
Scorr LM, Cho HJ, Kilic-Berkmen G, McKay JL, Hallett M, Klein C, Baumer T, Berman BD, Feuerstein JS, Perlmutter JS, Berardelli A, Ferrazzano G, Wagle-Shukla A, Malaty IA, Jankovic J, Bellows ST, Barbano RL, Vidailhet M, Roze E, Bonnet C, Mahajan A, LeDoux MS, Fung VS, Chang FC, Defazio G, Ercoli T, Factor S, Wojno T, Jinnah HA. Clinical Features and Evolution of Blepharospasm: A Multicenter International Cohort and Systematic Literature Review. DYSTONIA 2022; 1. [PMID: 36248010 PMCID: PMC9557246 DOI: 10.3389/dyst.2022.10359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: Blepharospasm is a type of dystonia where the diagnosis is often delayed because its varied clinical manifestations are not well recognized. The purpose of this study was to provide a comprehensive picture of its clinical features including presenting features, motor features, and non-motor features. Methods: This was a two-part study. The first part involved a systematic literature review that summarized clinical features for 10,324 cases taken from 41 prior reports. The second part involved a summary of clinical features for 884 cases enrolled in a large multicenter cohort collected by the Dystonia Coalition investigators, along with an analysis of the factors that contribute to the spread of dystonia beyond the periocular region. Results: For cases in the literature and the Dystonia Coalition, blepharospasm emerged in the 50s and was more frequent in women. Many presented with non-specific motor symptoms such as increased blinking (51.9%) or non-motor sensory features such as eye soreness or pain (38.7%), photophobia (35.5%), or dry eyes (10.7%). Non-motor psychiatric features were also common including anxiety disorders (34–40%) and depression (21–24%). Among cases presenting with blepharospasm in the Dystonia Coalition cohort, 61% experienced spread of dystonia to other regions, most commonly the oromandibular region and neck. Features associated with spread included severity of blepharospasm, family history of dystonia, depression, and anxiety. Conclusions: This study provides a comprehensive summary of motor and non-motor features of blepharospasm, along with novel insights into factors that may be responsible for its poor diagnostic recognition and natural history.
Collapse
Affiliation(s)
- Laura M. Scorr
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Gamze Kilic-Berkmen
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - J. Lucas McKay
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Tobias Baumer
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Brian D. Berman
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Joel S. Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St Louis, MO, United States
| | - Alfredo Berardelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Gina Ferrazzano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Aparna Wagle-Shukla
- Fixel Institute for Neurological Disease, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Irene A. Malaty
- Fixel Institute for Neurological Disease, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Steven T. Bellows
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Richard L. Barbano
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Marie Vidailhet
- Paris Brain Institute, Inserm, CNRS, AP-HP, Salpetrière Hospital, Sorbonne University, Paris, France
| | - Emmanuel Roze
- Paris Brain Institute, Inserm, CNRS, AP-HP, Salpetrière Hospital, Sorbonne University, Paris, France
| | - Cecilia Bonnet
- Paris Brain Institute, Inserm, CNRS, AP-HP, Salpetrière Hospital, Sorbonne University, Paris, France
| | - Abhimanyu Mahajan
- Rush Parkinson’s Disease and Movement Disorders Program, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Mark S. LeDoux
- Department of Psychology, Veracity Neuroscience LLC, University of Memphis, Memphis, TN, United States
| | - Victor S.C. Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, NSW, Australia
| | - Florence C.F. Chang
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Tomaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stewart Factor
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ted Wojno
- Emory Eye Center, Emory University, Atlanta, GA, United States
| | - H. A. Jinnah
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
- Correspondence: H. A. Jinnah,
| |
Collapse
|