1
|
Li XT, Chen L, Wang XM, Zheng CC, Huang X. Differences in cerebral spontaneous neural activity correlate with gene-specific transcriptional signatures in primary angle-closure glaucoma. Neuroscience 2025; 565:399-419. [PMID: 39653245 DOI: 10.1016/j.neuroscience.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
AIMS This study was aimed to investigate frequency-specific LFO changes and their correlation with gene pathways in PACG using transcriptome-neuroimaging analysis. METHODS Resting-state fMRI (Rs-fMRI) data were acquired from individuals with PACG and healthy controls for evaluating the amplitude of low-frequency oscillations (ALFF) across different frequency bands such as the full band, slow-4 band, and slow-5 band. Transcriptome analysis integrated information from the Allen Human Brain Atlas (AHBA) through gene set enrichment analysis, protein-protein interaction network construction, and specific expression analysis, aiming to clarify the link between ALFF patterns and gene expression profiles in PACG. Statistical analyses, including one-sample t-tests and two-sample t-tests, were used to assess ALFF differences between groups, while partial least squares (PLS) regression was applied to explore the associations between ALFF and transcriptome data. RESULTS This study identifies significant variations in ALFF values in PACG patients, observed consistently across multiple frequency bands, including slow-4 and slow-5. Enrichment analysis indicates that these genes are primarily involved in cellular components such as the cytosol and cytoplasm, molecular functions like protein binding, and key pathways, including metabolic and circadian rhythms, epithelial signaling in Helicobacter pylori infection, and glutathione metabolism. Protein-protein interaction (PPI) analysis further underscores the role of PACG-related genes in forming a functional network, highlighting hub genes critical for various biological processes. CONCLUSION This study establishes a connection between the molecular mechanisms of PACG and alterations in brain function and gene expression, providing valuable perspectives on the fundamental processes impacting low-frequency oscillations in PACG.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Lei Chen
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
| | - Xin-Miao Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Chun-Cheng Zheng
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, People's Republic of China.
| |
Collapse
|
2
|
Chen RB, Li XT, Huang X. Topological Organization of the Brain Network in Patients with Primary Angle-closure Glaucoma Through Graph Theory Analysis. Brain Topogr 2024; 37:1171-1185. [PMID: 38822211 DOI: 10.1007/s10548-024-01060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Primary angle-closure glaucoma (PACG) is a sight-threatening eye condition that leads to irreversible blindness. While past neuroimaging research has identified abnormal brain function in PACG patients, the relationship between PACG and alterations in brain functional networks has yet to be explored. This study seeks to examine the influence of PACG on brain networks, aiming to advance knowledge of its neurobiological processes for better diagnostic and therapeutic approaches utilizing graph theory analysis. A cohort of 44 primary angle-closure glaucoma (PACG) patients and 44 healthy controls participated in this study. Functional brain networks were constructed using fMRI data and the Automated Anatomical Labeling 90 template. Subsequently, graph theory analysis was employed to evaluate global metrics, nodal metrics, modular organization, and network-based statistics (NBS), enabling a comparative analysis between PACG patients and the control group. The analysis of global metrics, including small-worldness and network efficiency, did not exhibit significant differences between the two groups. However, PACG patients displayed elevated nodal metrics, such as centrality and efficiency, in the left frontal superior medial, right frontal superior medial, and right posterior central brain regions, along with reduced values in the right temporal superior gyrus region compared to healthy controls. Furthermore, Module 5 showed notable disparities in intra-module connectivity, while Module 1 demonstrated substantial differences in inter-module connectivity with both Module 7 and Module 8. Noteworthy, the NBS analysis unveiled a significantly altered network when comparing the PACG and healthy control groups. The study proposes that PACG patients demonstrate variations in nodal metrics and modularity within functional brain networks, particularly affecting the prefrontal, occipital, and temporal lobes, along with cerebellar regions. However, an analysis of global metrics suggests that the overall connectivity patterns of the entire brain network remain unaltered in PACG patients. These results have the potential to serve as early diagnostic and differential markers for PACG, and interventions focusing on brain regions with high degree centrality and nodal efficiency could aid in optimizing therapeutic approaches.
Collapse
Affiliation(s)
- Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Xiao-Tong Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Zhong YL, Liu H, Huang X. Altered dynamic large-scale brain networks and combined machine learning in primary angle-closure glaucoma. Neuroscience 2024; 558:11-21. [PMID: 39154845 DOI: 10.1016/j.neuroscience.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Primary angle-closure glaucoma (PACG) is a severe and irreversible blinding eye disease characterized by progressive retinal ganglion cell death. However, prior research has predominantly focused on static brain activity changes, neglecting the exploration of how PACG impacts the dynamic characteristics of functional brain networks. This study enrolled forty-four patients diagnosed with PACG and forty-four age, gender, and education level-matched healthy controls (HCs). The study employed Independent Component Analysis (ICA) techniques to extract resting-state networks (RSNs) from resting-state functional magnetic resonance imaging (rs-fMRI) data. Subsequently, the RSNs was utilized as the basis for examining and comparing the functional connectivity variations within and between the two groups of resting-state networks. To further explore, a combination of sliding time window and k-means cluster analyses identified seven stable and repetitive dynamic functional network connectivity (dFNC) states. This approach facilitated the comparison of dynamic functional network connectivity and temporal metrics between PACG patients and HCs for each state. Subsequently, a support vector machine (SVM) model leveraging functional connectivity (FC) and FNC was applied to differentiate PACG patients from HCs. Our study underscores the presence of modified functional connectivity within large-scale brain networks and abnormalities in dynamic temporal metrics among PACG patients. By elucidating the impact of changes in large-scale brain networks on disease evolution, researchers may enhance the development of targeted therapies and interventions to preserve vision and cognitive function in PACG.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Hao Liu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Chen J, Zhou X, Yuan XL, Xu J, Zhang X, Duan X. Causal association among glaucoma, cerebral cortical structures, and Alzheimer's disease: insights from genetic correlation and Mendelian randomization. Cereb Cortex 2024; 34:bhae385. [PMID: 39323397 DOI: 10.1093/cercor/bhae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma and Alzheimer's disease are critical degenerative neuropathies with global impact. Previous studies have indicated that glaucomatous damage could extend beyond ocular structures, leading to brain alterations potentially associated with Alzheimer's disease risk. This study aimed to explore the causal associations among glaucoma, brain alterations, and Alzheimer's disease. We conducted a comprehensive investigation into the genetic correlation and causality between glaucoma, glaucoma endophenotypes, cerebral cortical surficial area and thickness, and Alzheimer's disease (including late-onset Alzheimer's disease, cognitive performance, and reaction time) using linkage disequilibrium score regression and Mendelian randomization. This study showed suggestive genetic correlations between glaucoma, cortical structures, and Alzheimer's disease. The genetically predicted all-caused glaucoma was nominally associated with a decreased risk of Alzheimer's disease (OR = 0.96, 95% CI: 0.93-0.99, P = 0.013). We found evidence for suggestive causality between glaucoma (endophenotypes) and 20 cortical regions and between 29 cortical regions and Alzheimer's disease (endophenotypes). Four cortical regions were causally associated with cognitive performance or reaction time at a significant threshold (P < 6.2E-04). Thirteen shared cortical regions between glaucoma (endophenotypes) and Alzheimer's disease (endophenotypes) were identified. Our findings complex causal relationships among glaucoma, cerebral cortical structures, and Alzheimer's disease. More studies are required to clarify the mediation effect of cortical alterations in the relationship between glaucoma and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiawei Chen
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xiaoyu Zhou
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xiang-Ling Yuan
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Eye Institute, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Jiahao Xu
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xinyue Zhang
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xuanchu Duan
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| |
Collapse
|
5
|
Wang Q, Qu X, Wang H, Chen W, Sun Y, Li T, Chen J, Wang Y, Wang N, Xian J. Arterial spin labeling reveals disordered cerebral perfusion and cerebral blood flow-based functional connectivity in primary open-angle glaucoma. Brain Imaging Behav 2024; 18:231-242. [PMID: 38006574 PMCID: PMC10844339 DOI: 10.1007/s11682-023-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a widespread neurodegenerative condition affecting brain regions involved in visual processing, somatosensory processing, motor control, emotional regulation and cognitive functions. Cerebral hemodynamic dysfunction contributes to the pathogenesis of glaucomatous neurodegeneration. We aimed to investigate cerebral blood flow (CBF) redistributed patterns in visual and higher-order cognitive cortices and its relationship with clinical parameters in POAG, and we hypothesized that CBF changes together across regions within the same functional network. METHODS Forty-five POAG patients and 23 normal controls underwent three-dimensional pseudocontinuous arterial spin labeling MRI to measure the resting-state CBF. Group comparisons of CBF and correlations between CBF changes and ophthalmological and neuropsychological indices were assessed. We determined CBF-based functional connectivity (CBFC) by calculating the correlations between specific regions and all other brain voxels and compared CBFC differences between groups. RESULTS The patients exhibited decreased CBF in visual cortices, postcentral gyrus, inferior parietal lobule and cerebellum and increased CBF in medial, middle, and superior frontal gyri, as well as the insula. The reduced CBF in the visual cortices positively correlated with visual field defect (r = 0.498, p = 0.001) in POAG patients, while the increased CBF in the right medial frontal gyrus was negatively associated with the visual field defect (r = -0.438, p = 0.004) and positively associated with the cup-to-disc ratio (r = 0.469, p = 0.002). POAG patients showed negative connections weakening or converting to mild positive connections, as well as positive connections converting to negative connections. CONCLUSIONS Regional and interregional CBF properties confirmed that the aberrant brain regions extend beyond the visual pathway, including the somatosensory, emotional and cognitive networks, which highlights the importance of cerebral hemodynamic dysfunction in the pathophysiology of spreading neurodegeneration in POAG.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Huaizhou Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China
| | - Weiwei Chen
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China
| | - Yunxiao Sun
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Jianhong Chen
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Wang Y, Chen L, Cai F, Gao J, Ouyang F, Chen Y, Yin M, Hua C, Zeng X. Altered functional connectivity of the thalamus in primary angle-closure glaucoma patients: A resting-state fMRI study. Front Neurol 2022; 13:1015758. [PMID: 36277918 PMCID: PMC9583913 DOI: 10.3389/fneur.2022.1015758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background and objectives Glaucoma is one of the leading irreversible causes of blindness worldwide, and previous studies have shown that there is abnormal functional connectivity (FC) in the visual cortex of glaucoma patients. The thalamus is a relay nucleus for visual signals; however, it is not yet clear how the FC of the thalamus is altered in glaucoma. This study investigated the alterations in thalamic FC in patients with primary angle-closure glaucoma (PACG) by using resting-state functional MRI (rs-fMRI). We hypothesized that PACG patients have abnormal FC between the thalamus and visual as well as extravisual brain regions. Methods Clinically confirmed PACG patients and age- and gender-matched healthy controls (HCs) were evaluated by T1 anatomical and functional MRI on a 3 T scanner. Thirty-four PACG patients and 33 HCs were included in the rs-fMRI analysis. All PACG patients underwent complete ophthalmological examinations; included retinal nerve fiber layer thickness (RNFLT), intraocular pressure (IOP), average cup-to-disc ratio (A-C/D), and vertical cup-to-disc ratio (V-C/D). After the MRI data were preprocessed, the bilateral thalamus was chosen as the seed point; and the differences in resting-state FC between groups were evaluated. The brain regions that significantly differed between PACG patients and HCs were identified, and the correlations were then evaluated between the FC coefficients of these regions and clinical variables. Results Compared with the HCs, the PACG patients showed decreased FC between the bilateral thalamus and right transverse temporal gyrus, between the bilateral thalamus and left anterior cingulate cortex, and between the left thalamus and left insula. Concurrently, increased FC was found between the bilateral thalamus and left superior frontal gyrus in PACG patients. The FC between the bilateral thalamus and left superior frontal gyrus was positively correlated with RNFLT and negatively correlated with the A-C/D and V-C/D. The FC between the left thalamus and left insula was negatively correlated with IOP. Conclusion Extensive abnormal resting-state functional connections between the thalamus and visual and extravisual brain areas were found in PACG patients, and there were certain correlations with clinical variables, suggesting that abnormal thalamic FC plays an important role in the progression of PACG.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linglong Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fengqin Cai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junwei Gao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Ouyang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingxue Yin
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengpeng Hua
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xianjun Zeng
| |
Collapse
|
7
|
Ji Y, Cheng Q, Fu WW, Zhong PP, Huang SQ, Chen XL, Wu XR. Exploration of abnormal dynamic spontaneous brain activity in patients with high myopia via dynamic regional homogeneity analysis. Front Hum Neurosci 2022; 16:959523. [PMID: 35992950 PMCID: PMC9390771 DOI: 10.3389/fnhum.2022.959523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Patients with high myopia (HM) reportedly exhibit changes in functional brain activity, but the mechanism underlying such changes is unclear. This study was conducted to observe differences in dynamic spontaneous brain activity between patients with HM and healthy controls (HCs) via dynamic regional homogeneity (dReHo) analysis. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 82 patients with HM and 59 HCs who were closely matched for age, sex, and weight. The dReHo approach was used to assess local dynamic activity in the human brain. The association between mean dReHo signal values and clinical symptoms in distinct brain areas in patients with HM was determined via correlation analysis. Results In the left fusiform gyrus (L-FG), right inferior temporal gyrus (R-ITG), right Rolandic operculum (R-ROL), right postcentral gyrus (R-PoCG), and right precentral gyrus (R-PreCG), dReHo values were significantly greater in patients with HM than in HCs. Conclusion Patients with HM have distinct functional changes in various brain regions that mainly include the L-FG, R-ITG, R-ROL, R-PoCG, and R-PreCG. These findings constitute important evidence for the roles of brain networks in the pathophysiological mechanisms of HM and may aid in the diagnosis of HM.
Collapse
|
8
|
Kang M, Gao Y, Zhang L, Liang R, Li Q, Shu H, Pan Y, Ying P, Xu S, Yi S. Detection of Abnormal Spontaneous Brain Activity Patterns in Patients With Orbital Fractures Using Fractional Amplitude of Low Frequency Fluctuation. Front Neurol 2022; 13:874158. [PMID: 35911915 PMCID: PMC9326164 DOI: 10.3389/fneur.2022.874158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo date, no in-depth study has been conducted on the intrinsic pathological relationship between altered brain activity and related behavioral changes in patients with orbital fracture (OF).PurposeThe present research aimed to explore the potential functional network cerebrum activities in patients with OF using resting state functional magnetic resonance imaging–fractional amplitude of low-frequency fluctuation (rsfMRI-fALFF). This technique can reveal dynamic functional changes in specific cerebrum areas.MethodsTwenty patients with OF and 20 healthy controls (HCs) were included, closely matched in terms of gender, age, weight, and education level. To record spontaneous cerebral activity changes, the rsfMRI-fALFF tool was applied. Receiver operating characteristic (ROC) curves and Pearson's correlation analysis were used to analyze mean fALFF values in specific cerebrum regions and to explore changes of behavioral changes in patients with OF. The Hospital Depression and Anxiety scale was applied to reveal the relationship between emotional states and fALFF values of the right superior temporal gyrus in patients with OF.ResultsIn comparison with HCs, significantly lower fALFF values were detected in the left anterior cingulate gyrus (LACG) and right superior temporal gyrus (RSTG) in patients with OF. ROC curve analysis showed excellent accuracy. The mean fALFF values of the RSTG negatively correlated with the depression score as well as the anxiety score.ConclusionThe finding of abnormal spontaneous activities in cerebral regions may contribute to more comprehensive understanding of the potential neural network changes in patients with OF. The changes of fALFF value in patients with OF may help to gauge their emotional changes and clinical recovery levels.
Collapse
Affiliation(s)
- Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - YuXuan Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - LiJuan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - RongBin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - QiuYu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - HuiYe Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - YiCong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - SanHua Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Shao Yi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
- *Correspondence: Shao Yi
| |
Collapse
|
9
|
Fu Q, Liu H, Zhong YL. The Predictive Values of Changes in Local and Remote Brain Functional Connectivity in Primary Angle-Closure Glaucoma Patients According to Support Vector Machine Analysis. Front Hum Neurosci 2022; 16:910669. [PMID: 35664342 PMCID: PMC9160336 DOI: 10.3389/fnhum.2022.910669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose The primary angle-closure glaucoma (PACG) is an irreversible blinding eye disease in the world. Previous neuroimaging studies demonstrated that PACG patients were associated with cerebral changes. However, the effect of optic atrophy on local and remote brain functional connectivity in PACG patients remains unknown. Materials and Methods In total, 23 patients with PACG and 23 well-matched Health Controls (HCs) were enrolled in our study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The regional homogeneity (ReHo) method and functional connectivity (FC) method were used to evaluate the local and remote brain functional connectivity. Moreover, support vector machine (SVM) method was applied to constructing PACG classification model. Results Compared with the HC, PACG patients showed increased ReHo values in right cerebellum (CER)_8, left CER_4-5, and right CER_8. In contrast, PACG patients showed decreased ReHo values in the bilateral lingual gyrus (LING)/calcarine (CAL)/superior occipital gyrus (SOG) and right postcentral gyrus (PostCG). The ReHo value exhibited an accuracy of 91.30% and area under curve (AUC) of 0.95 for distinguishing the PACG patients from HC. Conclusion Our study demonstrated that the PACG patients showed abnormal ReHo value in the cerebellum, visual cortex, and supplementary motor area, which might be reflect the neurological mechanisms underlying vision loss and eye pain in PACG patients. Moreover, the ReHo values can be used as a useful biomarker for distinguishing the PACG patients from HCs.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Emergency, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Liu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yu Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Yu Lin Zhong,
| |
Collapse
|
10
|
Liang Y, Pan YC, Shu HY, Chou XM, Ge QM, Zhang LJ, Li QY, Liang RB, Li HL, Shao Y. Characteristics of the Fractional Amplitude of Low-Frequency Fluctuation in Ocular Hypertension Patients: A Resting-State fMRI Study. Front Med (Lausanne) 2022; 8:687420. [PMID: 35479659 PMCID: PMC9037746 DOI: 10.3389/fmed.2021.687420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background The fractional amplitude of low-frequency fluctuation (fALFF) method has been underutilized in research on the pathogenesis and clinical manifestations of ocular hypertension (OH). Purpose This study uses resting state functional magnetic resonance imaging (rs-fMRI) and fALFF to investigate the nature of spontaneous brain activity in OH patients and the relationship, if any, between changes in activity and clinical features. Materials and Methods A total of 18 subjects (9 females and 9 males) with ocular hypertension (OH) and 18 healthy controls (HCs) matched for gender, age, and educational level were recruited to this study. All participants underwent an rs-fMRI scan, and spontaneous brain activity was assessed using the fALFF method. Receiver operating characteristic curves were plotted to investigate differences between OH and HC groups. Results The fALFF values of OH patients were significantly higher in the left precuneus lobe (LP), compared with the same region in controls (P < 0.05). Conversely, values in the left anterior cingulate lobe (LAC), were significantly lower (P < 0.05) in OH than in controls. However, no significant association was found between the mean fALFF values and clinical characteristics in either brain area. Conclusion High spontaneous activity in two brain areas may reflect neuropathological mechanisms underpinning visual impairment in OH patients.
Collapse
|
11
|
Hu MY, Pan YC, Zhang LJ, Liang RB, Ge QM, Shu HY, Li QY, Pei CG, Shao Y. Altered Brain Activity in Patients With Comitant Strabismus Detected by Analysis of the Fractional Amplitude of Low-Frequency Fluctuation: A Resting-State Functional MRI Study. Front Hum Neurosci 2022; 16:874703. [PMID: 35463927 PMCID: PMC9027334 DOI: 10.3389/fnhum.2022.874703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
More and more studies showed that strabismus is not simply an ocular disease, but a neuro-ophthalmology disease. To analyze potential changes in brain activity and their relationship to behavioral performance in comitant strabismus patients and healthy controls. Our study recruited 28 patients with comitant strabismus and 28 people with matched weight, age range, and sex ratio as healthy controls. Using resting-state functional magnetic resonance imaging, we evaluated fALFF to compare spontaneous brain activity between comitant strabismus and healthy controls. We did hospital anxiety and depression scale questionnaires for these patients. We found significantly lower fALFF value in comitant strabismus patients compared with controls in the left frontal superior medial gyrus and the right middle cingulum. In the latter region, fALFF was significantly negatively correlated with the hospital anxiety and depression scale, as well as the duration of disease. Receiver operating characteristic curve analysis indicated that the fALFF method has clear potential for the diagnosis of comitant strabismus patients. These results revealed abnormal spontaneous activity in two brain regions of comitant strabismus patients, which may indicate underlying pathologic mechanisms and may help to advance clinical treatment.
Collapse
|
12
|
Kang L, Wan C. Application of advanced magnetic resonance imaging in glaucoma: a narrative review. Quant Imaging Med Surg 2022; 12:2106-2128. [PMID: 35284278 PMCID: PMC8899967 DOI: 10.21037/qims-21-790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/26/2021] [Indexed: 04/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by progressive degeneration of the optic nerve head and retinal ganglion cells and corresponding visual field defects. In recent years, mounting evidence has shown that glaucoma-related damage may not be limited to the degeneration of retinal ganglion cells or the optic nerve head. The entire structure of the visual pathway may be degraded, and the degradation may even extend to some non-visual brain regions. We know that advanced morphological, functional, and metabolic magnetic resonance technologies provide a means to observe quantitatively and in real time the state of brain function. Advanced magnetic resonance imaging (MRI) techniques provide additional diagnostic markers for glaucoma, which are related to known potential histopathological changes. Many researchers in China and globally have conducted clinical and imaging studies on glaucoma. However, they are scattered, and we still need to systematically sort out the advanced MRI related to glaucoma. We reviewed literature published in any language and included all studies that were able to be translated into English from 1 January 1980 to 31 July 2021. Our literature search focused on emerging magnetic resonance neuroimaging techniques for the study of glaucoma. We then identified each functional area of the brain of glaucoma patients through the integration of anatomy, image, and function. The aim was to provide more information about the occurrence and development of glaucoma diseases. From the perspective of neuroimaging, our study provides a research basis to explain the possible mechanism of the occurrence and development of glaucoma. This knowledge gained from these techniques enables us to more clearly observe the damage glaucoma causes to the whole visual pathway. Our study provides new insights into glaucoma-induced changes to the brain. Our findings may enable the progress of these changes to be analyzed and inspire new neuroprotective therapeutic strategies for patients with glaucoma in the future.
Collapse
Affiliation(s)
- Longdan Kang
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
13
|
Ding J, Qu X, Cui J, Dong J, Guo J, Xian J, Li D. Altered Spontaneous Brain Activity and Network Property in Patients With Congenital Monocular Blindness. Front Neurol 2022; 13:789655. [PMID: 35280267 PMCID: PMC8907119 DOI: 10.3389/fneur.2022.789655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with congenital monocular blindness may have specific brain changes since the brain is prenatally deprived of half the normal visual input. To explore characteristic brain functional changes of congenital monocular blindness, we analyzed resting-state functional MRI (rs-fMRI) data of 16 patients with unilateral congenital microphthalmia and 16 healthy subjects with normal vision to compare intergroup differences of amplitude of low frequency fluctuations (ALFFs), functional connectivity (FC), and network topolgoical properties. Compared with controls, patients with microphthalmia exhibited significantly lower ALFF values in the left inferior occipital and temporal gyri, superior temporal gyrus, inferior parietal lobe and post-central gyrus, whereas higher ALFF in the right middle and inferior temporal gyri, middle and superior frontal gyri, left superior frontal, and temporal gyri, such as angular gyrus. Meanwhile, FC between left medial superior frontal gyrus and angular gyrus, FC between left superior temporal gyrus and inferior parietal lobe and post-central gyrus decreased in the patients with congenital microphthalmia. In addition, a graph theory-analysis revealed increased regional network metrics (degree centrality and nodal efficiency) in the middle and inferior temporal gyri and middle and superior frontal gyri, while decreased values in the inferior occipital and temporal gyri, inferior parietal lobule, post-central gyrus, and angular gyrus. Taken together, patients with congenital microphthalmia had widespread abnormal activities within neural networks involving the vision and language and language-related regions played dominant roles in their brain networks. These findings may provide clues for functional reorganization of vision and language networks induced by the congenital monocular blindness.
Collapse
Affiliation(s)
- Jingwen Ding
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Cui
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Dong
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian Guo
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junfang Xian
| | - Dongmei Li
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Dongmei Li
| |
Collapse
|
14
|
Zhu P, Liu Z, Lu Y, Wang Y, Zhang D, Zhao P, Lin L, Hussein NM, Liu X, Yan Z, Bai G, Tu Y. Alterations in Spontaneous Neuronal Activity and Microvascular Density of the Optic Nerve Head in Active Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:895186. [PMID: 35937801 PMCID: PMC9354054 DOI: 10.3389/fendo.2022.895186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate changes in local spontaneous brain activity in patients with active thyroid-associated ophthalmopathy (TAO) and explore the relationship between such alterations and microvascular indices. METHODS Thirty-six active TAO patients with active phase and 39 healthy controls (HCs) were enrolled in this study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI), neuropsychological tests, and ophthalmological examinations. The rs-fMRI-based fractional low-frequency fluctuation amplitude (fALFF) analysis methods were used to assess spontaneous brain activity in both groups. The structure (peripapillary retinal nerve fiber layer, pRNFL) and microvascular indices (the optic nerve head (ONH) whole image vessel density, ONH-wiVD, and peripapillary vessel density) were analyzed through optical coherence tomographic angiography imaging. The relationship between abnormal spontaneous brain activity and ophthalmological indices was analyzed using the Spearman's rank correlation analysis. RESULTS Compared with HCs, active TAO patients had increased fALFF in the right inferior temporal gyrus (R.ITG) and left posterior cingulate gyrus (L.PCC), but decreased fALFF in the right calcarine (R.CAL). The fALFF values in L.PCC were positively correlated with peripapillary vessel density, whereas fALFF values in R.CAL were negatively related to peripapillary vessel density. CONCLUSIONS This study demonstrates that changes in spontaneous brain activity of active TAO are accompanied by peripapillary microvascular variations. These results provide insights into the pathophysiological mechanisms of active TAO. In addition, the combination of fALFF values and peripapillary vessel density may be served as important references for better clinical decision making.
Collapse
Affiliation(s)
- Pingyi Zhu
- Wenzhou Medical University, Wenzhou, China
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zihui Liu
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinghui Zhao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nimo Mohamed Hussein
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- China-USA Neuroimaging Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, China
- *Correspondence: Guanghui Bai, ; Yunhai Tu,
| | - Yunhai Tu
- Wenzhou Medical University, Wenzhou, China
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Bai, ; Yunhai Tu,
| |
Collapse
|
15
|
Chen W, Wu Q, Chen L, Zhou J, Chen HH, Xu XQ, Wu FY, Hu H. Aberrant brain voxel-wise resting state fMRI in patients with thyroid-associated ophthalmopathy. J Neuroimaging 2021; 31:773-783. [PMID: 33817897 DOI: 10.1111/jon.12858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Although ophthalmic complaints were mostly mentioned in thyroid-associated ophthalmopathy (TAO), emotional and psychological disturbances are increasingly concerned. We aimed to investigate the brain functional alteration in TAO patients by using resting-state functional MRI (rs-fMRI) with the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC) methods. METHODS Twenty-one consecutive TAO patients and 21 healthy controls (HCs) underwent rs-fMRI scans. The fALFF, ReHo, and DC values were compared between groups. RESULTS Compared with HCs, TAO group showed decreased fALFF values in bilateral calcarine/left lingual gyrus and left middle occipital gyrus (MOG). Moreover, TAO group had decreased ReHo values in left MOG/inferior occipital gyrus/fusiform gyrus, while increased ReHo values in bilateral middle frontal gyrus (MFG)/superior frontal gyrus (SFG) than HCs. TAO group also showed decreased DC values in bilateral postcentral gyrus (PoCG)/precentral gyrus/superior parietal lobule and supplementary motor area, and increased DC values in left SFG/MFG and MFG. In TAO patients, ReHo value in left MOG was positively correlated with visual acuity (r = 0.524, p = 0.021), while ReHo values in bilateral MFGs were negatively correlated with cognitive scores (left/right: r = -0.476/-0.527, p = 0.039/0.020). DC value in left PoCG was negatively correlated with disease duration (r = -0.492, p = 0.033). CONCLUSIONS Our findings indicated that TAO patients had brain functional alterations in the visual network, executive control network, sensorimotor network, and attention network, which may reflect potential visual and cognitive dysfunctions.
Collapse
Affiliation(s)
- Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|