1
|
Castelli MB, Alonso-Recio L, Carvajal F, Serrano JM. Does the Montreal Cognitive Assessment (MoCA) identify cognitive impairment profiles in Parkinson's disease? An exploratory study. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:238-247. [PMID: 34894908 DOI: 10.1080/23279095.2021.2011727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An important proportion of patients with Parkinson's Disease (PD) present signs of cognitive impairment, although this is heterogeneous. In an attempt to classify this, the dual syndrome hypothesis distinguishes between two profiles: one defined by attentional and executive problems with damage in anterior cerebral regions, and another with mnesic and visuospatial alterations, with damage in posterior cerebral regions. The Montreal Cognitive Assessment (MoCA) is one of the recommended screening tools, and one of the most used, to assess cognitive impairment in PD. However, its ability to specifically identify these two profiles of cognitive impairment has not been studied. The aim of this study was, therefore, to analyze the capacity of the MoCA to detect cognitive impairment, and also to identify anterior and posterior profiles defined by the dual syndrome hypothesis. For this purpose, 59 patients with idiopathic PD were studied with the MoCA and a neuropsychological battery of tests covering all cognitive domains. Results of logistic regression analysis with ROC (Receiver Operating Characteristic) curves showed that MoCA detected cognitive impairment and identified patients with a profile of anterior/attentional and executive deficit, with acceptable sensibility and specificity. However, it did not identify patients with a posterior/mnesic-visuospatial impairment. We discuss the reasons for the lack of sensitivity of MoCA in this profile, and other possible implications of these results with regards the usefulness of this tool to assess cognitive impairment in PD.
Collapse
Affiliation(s)
- María Belén Castelli
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Alonso-Recio
- Departamento de Psicología y Salud, Facultad de Ciencias de la Salud y la Educación, Universidad a Distancia de Madrid, Madrid, Spain
| | - Fernando Carvajal
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Manuel Serrano
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
3
|
Zhai H, Fan W, Xiao Y, Zhu Z, Ding Y, He C, Zhang W, Xu Y, Zhang Y. Voxel-based morphometry of grey matter structures in Parkinson's Disease with wearing-off. Brain Imaging Behav 2023; 17:725-737. [PMID: 37735325 PMCID: PMC10733201 DOI: 10.1007/s11682-023-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Our study aimed to investigate the grey matter (GM) changes using voxel-based morphometry (VBM) in Parkinson's disease (PD) patients with wearing-off (WO). 3D-T1-weighted imaging was performed on 48 PD patients without wearing-off (PD-nWO), 39 PD patients with wearing-off (PD-WO) and 47 age and sex-matched healthy controls (HCs). 3D structural images were analyzed by VBM procedure with Statistical Parametric Mapping (SPM12) to detect grey matter volume. Widespread areas of grey matter changes were found in patients among three groups (in bilateral frontal, temporal lobes, lingual gyrus, inferior occipital gyrus, right precuneus, right superior parietal gyrus and right cerebellum). Grey matter reductions were found in frontal lobe (right middle frontal gyrus, superior frontal gyrus and precentral gyrus), right parietal lobe (precuneus, superior parietal gyrus, postcentral gyrus), right temporal lobe (superior temporal gyrus, middle temporal gyrus), bilateral lingual gyrus and inferior occipital gyrus in PD-WO group compared with the PD-nWO group. Our results suggesting that wearing-off may be associated with grey matter atrophy in the cortical areas. These findings may aid in a better understanding of the brain degeneration process in PD with wearing-off.
Collapse
Affiliation(s)
- Heng Zhai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Zhipeng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Ying Ding
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Wei Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Regional cortical hypoperfusion and atrophy correlate with striatal dopaminergic loss in Parkinson's disease: a study using arterial spin labeling MR perfusion. Neuroradiology 2023; 65:569-577. [PMID: 36376524 DOI: 10.1007/s00234-022-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the relationship of the striatal dopamine transporter density to changes in the gray matter (GM) volume and cerebral perfusion in patients with Parkinson's disease (PD). METHODS We evaluated the regional cerebral blood flow (CBF) and GM volume, concurrently measured using arterial spin labeling and T1-weighted magnetic resonance imaging, respectively, as well as the striatal specific binding ratio (SBR) in 123I-N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) single-photon emission computed tomography in 30 non-demented patients with PD (15 men and 15 women; mean age, 67.2 ± 8.8 years; mean Hoehn-Yahr stage, 2.2 ± 0.9). Voxel-wise regression analyses using statistical parametric mapping (SPM) were performed to explore the brain regions that showed correlations of the striatal SBR to the GM volume and CBF, respectively, with a height threshold of p < 0.0005 at the voxel level and p < 0.05 family-wise error-corrected at the cluster level. RESULTS SPM analysis showed a significant positive correlation between the SBR and GM volume in the inferior frontal gyrus (IFG). Whereas, a positive correlation between the SBR and CBF was widely found in the frontotemporal and parietotemporal regions, including the IFG. Notably, the opercular part of the IFG showed significant correlations in both SPM analyses of the GM volume (r2 = 0.90, p < 0.0001) and CBF (r2 = 0.88, p < 0.0001). CONCLUSION The voxel-wise analyses revealed the brain regions, mainly the IFG, that showed hypoperfusion and atrophy related to dopaminergic loss, which suggests that the progression of dopaminergic neurodegeneration leads to regional cortical dysfunction in PD.
Collapse
|
5
|
Zheng J, Wu X, Dai J, Pan C, Shi H, Liu T, Jiao Z. Aberrant brain gray matter and functional networks topology in end stage renal disease patients undergoing maintenance hemodialysis with cognitive impairment. Front Neurosci 2022; 16:967760. [PMID: 36033631 PMCID: PMC9399762 DOI: 10.3389/fnins.2022.967760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To characterize the topological properties of gray matter (GM) and functional networks in end-stage renal disease (ESRD) patients undergoing maintenance hemodialysis to provide insights into the underlying mechanisms of cognitive impairment. Materials and methods In total, 45 patients and 37 healthy controls were prospectively enrolled in this study. All subjects completed resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion kurtosis imaging (DKI) examinations and a Montreal cognitive assessment scale (MoCA) test. Differences in the properties of GM and functional networks were analyzed, and the relationship between brain properties and MoCA scores was assessed. Cognitive function was predicted based on functional networks by applying the least squares support vector regression machine (LSSVRM) and the whale optimization algorithm (WOA). Results We observed disrupted topological organizations of both functional and GM networks in ESRD patients, as indicated by significantly decreased global measures. Specifically, ESRD patients had impaired nodal efficiency and degree centrality, predominantly within the default mode network, limbic system, frontal lobe, temporal lobe, and occipital lobe. Interestingly, the involved regions were distributed laterally. Furthermore, the MoCA scores significantly correlated with decreased standardized clustering coefficient (γ), standardized characteristic path length (λ), and nodal efficiency of the right insula and the right superior temporal gyrus. Finally, optimized LSSVRM could predict the cognitive scores of ESRD patients with great accuracy. Conclusion Disruption of brain networks may account for the progression of cognitive dysfunction in ESRD patients. Implementation of prediction models based on neuroimaging metrics may provide more objective information to promote early diagnosis and intervention.
Collapse
Affiliation(s)
- Jiahui Zheng
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiangxiang Wu
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jiankun Dai
- GE Healthcare, MR Research China, Beijing, China
| | - Changjie Pan
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- *Correspondence: Haifeng Shi,
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Tongqiang Liu,
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- Zhuqing Jiao,
| |
Collapse
|
6
|
Long Q, Lv Z, Zhao J, Shi K, Li C, Fan B, Zheng J. Cerebral gray matter volume changes in patients with anti-N-methyl-D-aspartate receptor encephalitis: A voxel-based morphometry study. Front Neurol 2022; 13:892242. [PMID: 35959389 PMCID: PMC9358280 DOI: 10.3389/fneur.2022.892242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 01/19/2023] Open
Abstract
Background Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disease with typical clinical features. Whether and how cerebral gray matter structural damage inherent to the disorder affects cognitive function in patients is still unclear. Therefore, this study aimed to explore the changes in cerebral gray matter volume and whether these alterations contribute to cognitive impairment and mood disorders. Methods Forty patients with anti-NMDAR encephalitis and forty healthy controls (HCs) matched for gender, age, and education were recruited. All participants underwent attention network tests (ANT), neuropsychological tests and magnetic resonance imaging (MRI). Voxel-based morphological analysis (VBM) and correlation analysis was performed on all participants. Finally, according to the course of disease, patients were divided into two groups: NMDARE_SD (short duration; course ≤ 2 years since diagnosis) and NMDARE_LD (long duration; course >2 years since diagnosis), to evaluate gray matter volume changes that differ as a function of disease course. Results Compared to HCs, patients with anti-NMDAR encephalitis showed decreased executive control ability and lower MoCA score, while increased anxiety and depression as reflected by HAMA and HAMD24 scores (all P < 0.05). In VBM analysis, patients showed decreased gray matter volume in bilateral thalamus, left medial prefrontal cortex (mPFC_L), left superior temporal gyrus (STG_L), and left rectus gyrus. In the analysis stratified by disease course, the NMDARE_LD group exhibited decreased gray matter volume in the left precuneus and right posterior cerebellar lobe compared to the NMDARE_SD group. Conclusions Patients with anti-NMDAR encephalitis have cognitive, executive, and emotional dysfunction, and the sites of gray matter atrophy are concentrated in the thalamus, frontal lobe, and temporal lobe. These abnormalities may be involved in the process of cognitive and affective dysfunction.Patients with different courses of anti-NMDAR encephalitis have different brain atrophy sites. These results may help to clarify the contradiction between clinical and imaging manifestations of anti NMDAR encephalitis, which is worthy of further longitudinal studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Li LY, Wang YY, Gao JW, Chen J, Kang M, Ying P, Liao X, Wang Y, Zou J, Su T, Wei H, Shao Y. The Predictive Potential of Altered Voxel-Based Morphometry in Severely Obese Patients With Meibomian Gland Dysfunction. Front Neurosci 2022; 16:939268. [PMID: 35873814 PMCID: PMC9302233 DOI: 10.3389/fnins.2022.939268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate voxel-based morphometry (VBM) by using magnetic resonance imaging (MRI) in meibomian gland dysfunction patients with severe obesity (PATs) and to explore the application of VBM in the early diagnosis, prevention of cognitive impairment and targeted treatment of this disease. Methods Sixteen PATs and 12 healthy controls (HCs) were enrolled and underwent MRI. Whole-head images were analyzed using VBM and data were compared between groups using an independent samples t-test. Receiver operating characteristic (ROC) curves were utilized to assess the diagnostic value of this approach. Mini-mental state examination (MMSE) scores were used to assess cognitive impairment and were analyzed using an independent samples t-test. Results Compared with HCs, the VBM values in PATs were reduced in the left cerebellum and right thalamus but increased in the right brainstem, right precuneus and right paracentral lobule. The results of ROC curve analysis indicated that VBM may be useful in meibomian gland disease diagnosis. Comparison of MMSE scores between groups showed mild cognitive impairment in PATs. Conclusion PATs showed altered VBM values in some brain areas. These findings may provide information about the pathophysiology of meibomian gland dysfunction and may help to explain the underlying mechanisms of clinical manifestations in PATs, such as cognitive impairment. Abnormal VBM values in these brain areas may serve as predictive factors for development of meibomian gland disease in severely obese people and as indicators for individualized treatment.
Collapse
Affiliation(s)
- Le-Yan Li
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, Queen Mary School, Nanchang University, Nanchang, China
| | - Yuan-Yuan Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Wei Gao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xulin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yixin Wang
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jie Zou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Hong Wei
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yi Shao,
| |
Collapse
|
8
|
Cicero CE, Donzuso G, Luca A, Davì M, Baschi R, Mostile G, Giuliano L, Palmucci S, Salerno A, Monastero R, Nicoletti A, Zappia M. Morphometric
MRI
Cortico‐subcortical features in Parkinson’s Disease with mild cognitive impairment. Eur J Neurol 2022; 29:3197-3204. [DOI: 10.1111/ene.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Calogero Edoardo Cicero
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Giulia Donzuso
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Marco Davì
- Department of Biomedicine, Neuroscience and advanced Diagnostics University of Palermo, Via La Loggia 1 Palermo Italy
| | - Roberta Baschi
- Department of Biomedicine, Neuroscience and advanced Diagnostics University of Palermo, Via La Loggia 1 Palermo Italy
| | - Giovanni Mostile
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
- Oasi Research Institute ‐ IRCCS Troina Italy
| | - Loretta Giuliano
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Stefano Palmucci
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Radiodiagnostic and Radiotherapy Unit University of Catania, Via Santa Sofia 78 Catania Italy
| | - Andrea Salerno
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience and advanced Diagnostics University of Palermo, Via La Loggia 1 Palermo Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced technologies G.F. Ingrassia, Section of Neurosciences University of Catania, Via Santa Sofia 78 Catania Italy
| |
Collapse
|
9
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
10
|
Executive functioning and serum lipid fractions in Parkinson's disease-a possible sex-effect: the PACOS study. J Neural Transm (Vienna) 2022; 129:287-293. [PMID: 35024950 PMCID: PMC8930892 DOI: 10.1007/s00702-022-02460-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
The association between dyslipidemia and cognitive performance in Parkinson's disease (PD) patients still needs to be clarified. Aim of the study was to evaluate the presence of possible associations between serum lipids fractions and executive dysfunction also exploring the sex-specific contribute of lipids level on cognition. Patients from the PACOS cohort, who underwent a complete serum lipid profile measures (total cholesterol-TC, low-density lipoprotein cholesterol-LDL, high-density lipoprotein cholesterol-HDL and triglycerides-TG) were selected. Adult Treatment Panel III guidelines of the National Cholesterol Education Program were used to classify normal/abnormal lipid fractions. Executive functioning was assessed with the Frontal Assessment Battery (FAB). Logistic regression was performed to assess associations between lipids fractions and FAB score. Correlations between lipids fractions and FAB score were explored. Sex-stratified analysis was performed. Three hundred and forty-eight PD patients (148 women; age 66.5 ± 9.5 years; disease duration 3.9 ± 4.9 years) were enrolled. Women presented significantly higher TC, LDL and HDL than men. In the whole sample, any association between lipid profile measures and FAB score was found. Among women, a positive association between hypertriglyceridemia and FAB score under cutoff was found (OR 3.4; 95%CI 1.29-9.03; p value 0.013). A statistically significant negative correlation was found between the FAB score and triglyceride serum levels (r = - 0.226; p value 0.005). Differently, among men, a statistically significant negative association between hypercholesterolemia and FAB score under cutoff (OR 0.4; 95%CI 0.17-0.84; p value 0.018) and between high LDL levels and FAB score under cutoff (OR 0.4; 95%CI 0.18-0.90; p value 0.027) were found. Our data suggest a sex-specific different role of lipids in executive functioning.
Collapse
|
11
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
12
|
Pierzchlińska A, Kwaśniak-Butowska M, Sławek J, Droździk M, Białecka M. Arterial Blood Pressure Variability and Other Vascular Factors Contribution to the Cognitive Decline in Parkinson's Disease. Molecules 2021; 26:molecules26061523. [PMID: 33802165 PMCID: PMC8001922 DOI: 10.3390/molecules26061523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Dementia is one of the most disabling non-motor symptoms in Parkinson’s disease (PD). Unlike in Alzheimer’s disease, the vascular pathology in PD is less documented. Due to the uncertain role of commonly investigated metabolic or vascular factors, e.g., hypertension or diabetes, other factors corresponding to PD dementia have been proposed. Associated dysautonomia and dopaminergic treatment seem to have an impact on diurnal blood pressure (BP) variability, which may presumably contribute to white matter hyperintensities (WMH) development and cognitive decline. We aim to review possible vascular and metabolic factors: Renin-angiotensin-aldosterone system, vascular endothelial growth factor (VEGF), hyperhomocysteinemia (HHcy), as well as the dopaminergic treatment, in the etiopathogenesis of PD dementia. Additionally, we focus on the role of polymorphisms within the genes for catechol-O-methyltransferase (COMT), apolipoprotein E (APOE), vascular endothelial growth factor (VEGF), and for renin-angiotensin-aldosterone system components, and their contribution to cognitive decline in PD. Determining vascular risk factors and their contribution to the cognitive impairment in PD may result in screening, as well as preventive measures.
Collapse
Affiliation(s)
- Anna Pierzchlińska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstańców Wlkp 72, 70-111 Szczecin, Poland;
- Correspondence: (A.P.); (M.D.)
| | - Magdalena Kwaśniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, Aleja Jana Pawła II 50, 80-462 Gdansk, Poland; (M.K.-B.); (J.S.)
- Department of Neurology, St Adalbert Hospital, Aleja Jana Pawła II 50, 80-462 Gdansk, Poland
| | - Jarosław Sławek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, Aleja Jana Pawła II 50, 80-462 Gdansk, Poland; (M.K.-B.); (J.S.)
- Department of Neurology, St Adalbert Hospital, Aleja Jana Pawła II 50, 80-462 Gdansk, Poland
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstańców Wlkp 72, 70-111 Szczecin, Poland
- Correspondence: (A.P.); (M.D.)
| | - Monika Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstańców Wlkp 72, 70-111 Szczecin, Poland;
| |
Collapse
|