1
|
Pavan E, Peruzzo P, Cattarossi S, Bergamin N, Bordugo A, Sechi A, Scarpa M, Biasizzo J, Colucci F, Dardis A. Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions. Int J Mol Sci 2024; 25:6615. [PMID: 38928321 PMCID: PMC11204053 DOI: 10.3390/ijms25126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.
Collapse
Affiliation(s)
- Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Natascha Bergamin
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Andrea Bordugo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Annalisa Sechi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Jessica Biasizzo
- Clinical Pathology Division, Department of Laboratory Medicine, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy;
| | - Fabiana Colucci
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| |
Collapse
|
2
|
Zimmern V, Minassian B. Progressive Myoclonus Epilepsy: A Scoping Review of Diagnostic, Phenotypic and Therapeutic Advances. Genes (Basel) 2024; 15:171. [PMID: 38397161 PMCID: PMC10888128 DOI: 10.3390/genes15020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX 75390, USA;
| | | |
Collapse
|
3
|
Salman M, Verma A, Chaurasia S, Prasad D, Kannabiran C, Singh V, Ramappa M. Identification and in silico analysis of a spectrum of SLC4A11 variations in Indian familial and sporadic cases of congenital hereditary endothelial dystrophy. Orphanet J Rare Dis 2022; 17:361. [PMID: 36115991 PMCID: PMC9482203 DOI: 10.1186/s13023-022-02521-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital hereditary endothelial dystrophy (CHED) is a rare form of corneal dystrophy caused by SLC4A11 gene variations. This study aims to find the genetic alterations in SLC4A11, in two Indian familial CHED cases with affected members n = 3 and n = 2 respectively and five sporadic CHED cases using direct sequencing, followed by in silico analysis and characterization of the identified variants.
Results
All three affected members of the first CHED family were identified with a novel homozygous c.1514C > G (p.Ser489Trp) variation while second family showed presence of a compound heterozygous variation c.529A > C (p.Arg161Arg) + c.2461insT (p.Val805fs). Among five sporadic cases, two showed novel changes, homozygous c.1487G > T (p.Ser480Ile) and c.620-2A > G, while the other one had previously reported homozygous c.2653C > T (p.Arg869Cys) variation. The remaining two cases did not reveal the presence of SLC4A11-related pathogenic variations. The identified variations were excluded from the Indian control (n = 80). In silico analysis using homology-based protein modeling and pathogenicity prediction tools, which revealed these alterations as pathogenic, changing their protein stability, local flexibility, residue contact clashes, and the hydrogen bond interactions.
Conclusions
This study contributed to the CHED mutational spectrum, adding four novel variations and confirming a previously reported one. It demonstrates different type of variations in CHED cases, including coding, non-coding, homozygous, synonymous, and compound heterozygous variations. The identified variations revealed different degrees of pathogenic effects in silico. Moreover, two sporadic cases could not be identified with pathogenic variation emphasizing the involvement of other genes or genetic mechanisms.
Collapse
|
4
|
Atasu B, Acarlı ANO, Bilgic B, Baykan B, Demir E, Ozluk Y, Turkmen A, Hauser AK, Guven G, Hanagasi H, Gurvit H, Emre M, Gasser T, Lohmann E. Genotype-Phenotype correlations of SCARB2 associated clinical presentation: a case report and in-depth literature review. BMC Neurol 2022; 22:122. [PMID: 35346091 PMCID: PMC8962058 DOI: 10.1186/s12883-022-02628-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the SCARB2 gene have been associated with action myoclonus-renal failure (AMRF) syndrome. Even though SCARB2 associated phenotype has been reported to include typical neurological characteristics, depending on the localization and the feature of the pathogenic variants, clinical course and the presentations have been shown to differ. CASE PRESENTATION Whole exome sequencing (WES) analysis revealed a homozygous truncating variant (p.N45MfsX88) in SCARB2 gene in the index case, and subsequent sanger sequencing analysis validated the variant in all affected family members from a Turkish family with the clinical characteristics associated with AMRF and related disorders. Intrafamilial clinical heterogeneity with common features including dysarthria, tremor and proteinuria, and distinct features such as peripheral neuropathy (PNP), myoclonus and seizures between the affected cases, was observed in the family. In-depth literature review enabled the detailed investigation of the reported variants associated with AMRF and suggested that while the type of the variant did not have a major impact on the course of the clinical characteristics, only the C terminal localization of the pathogenic variant significantly affected the clinical presentation, particularly the age at onset (AO) of the disease. CONCLUSIONS In this study we showed that biallelic SCARB2 pathogenic variants might cause a spectrum of common and distinct features associated with AMRF. Of those features while the common features include myoclonus (100%), ataxia (96%), tonic clonic seizures (82%), dysarthria (68%), tremor (65%), and renal impairment (62%), the uncommon features involve PNP (17%), hearing loss (6.8%), and cognitive impairment (13.7%). AO has been found to be significantly higher in the carriers of the p.G462DfsX34 pathogenic variant. SCARB2 pathogenic variants have not been only implicated in AMRF but also in the pathogenesis of Parkinson's disease (PD) and Gaucher disease (GD), suggesting the importance of genetic and functional studies in the clinical and the diagnostic settings. Given the proven role of SCARB2 gene in the pathogenesis of AMRF, PD and GD with a wide spectrum of clinical symptoms, investigation of the possible modifiers, such as progranulin and HSP7, has a great importance.
Collapse
Affiliation(s)
- Burcu Atasu
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.
| | - Ayse Nur Ozdag Acarlı
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Ozluk
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aydin Turkmen
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Division of Nephrology, Department of Internal Medicine, Koc School of Medicine, Koc University, Istanbul, Turkey
| | - Ann-Kathrin Hauser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Gamze Guven
- Institute for Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Emre
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Ebba Lohmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| |
Collapse
|