1
|
Lau A, Jain MK, Chow JYS, Kitchell E, Lazarte S, Nijhawan A. Toxoplasmosis Encephalitis: A Cross-Sectional Analysis at a U.S. Safety-Net Hospital in the Late cART Era. J Int Assoc Provid AIDS Care 2021; 20:23259582211043863. [PMID: 34663116 PMCID: PMC8529305 DOI: 10.1177/23259582211043863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Despite decreasing incidence of toxoplasmosis encephalitis(TE) among people
living with HIV(PLWH) in the late antiretroviral era, U.S. safety-net hospitals
still see significant numbers of admissions for TE. Little is known about this
population, their healthcare utilization and long-term outcomes. We conducted an
8-year retrospective review of PLWH with TE at a safety-net hospital.
Demographics, clinical characteristics, treatments, readmissions, and outcomes
were collected. We used chi-squared test to evaluate 6-month all-cause
readmission and demographic/clinical characteristics. Of 38 patients identified,
79% and 40% had a new diagnosis of TE and HIV respectively. 59% had 6-month
all-cause readmission. Social factors were associated with readmission
(uninsured (p = 0.036), Spanish as primary language (p = 0.017), non-adherence
(p = 0.030)) and not markers of clinical severity (ICU admission, steroid-use,
concomitant infections, therapeutic adverse events). Despite high readmission
rates, at follow-up, 60% had a complete response, 30% had a partial response.
Improving TE outcomes requires focus on culturally competent, coordinated
care.
Collapse
Affiliation(s)
- Abby Lau
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mamta Khandelwal Jain
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Parkland Health and Hospital System, Dallas, TX, USA
| | - Jeremy Yan-Shun Chow
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ellen Kitchell
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Susana Lazarte
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ank Nijhawan
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Toxoplasma gondii in South America: a differentiated pattern of spread, population structure and clinical manifestations. Parasitol Res 2021; 120:3065-3076. [PMID: 34390383 DOI: 10.1007/s00436-021-07282-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa. It has a worldwide distribution and can infect a wide variety of intermediate hosts, including humans. In South America, toxoplasmosis shows high health impacts, and the incidence of the disease is frequently reported and more severe than in other regions, such as Europe. Although most T. gondii infections are asymptomatic, severe manifestations can occur in cases of congenital toxoplasmosis and immunocompromised individuals. In South America, the ocular disease in immunocompetent individuals is also frequently reported. Treatment for any clinical manifestation of toxoplasmosis consists of the combination of sulfadiazine (SDZ) and pyrimethamine (PYR). However, failures in the treatment of toxoplasmosis have been reported, especially in South America, suggesting the acquisition of resistance against SDZ and PYR. Another paradigm present in the literature is that once infected with T. gondii, the host is immunologically protected from further reinfections. However, some studies indicate cases of congenital transmission of T. gondii from immunocompetent pregnant women with chronic infection, suggesting the possibility of reinfection in humans. Thus, in this review, we will cover several aspects of South American T. gondii isolates, such as genetic characterization, disease manifestation, host reinfection and drug resistance.
Collapse
|
3
|
Shi X, Yan Q, Zhan Y, Shi C, Song F, Wang L, Qi T, Lu H, Shan F, Shi Y. Effect of combination antiretroviral therapy on the clinical manifestations, radiological characteristics, and disease severity of HIV-associated Talaromyces marneffei infection. Int J STD AIDS 2021; 31:747-752. [PMID: 32631212 DOI: 10.1177/0956462420925248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to evaluate whether combination antiretroviral therapy (cART) has an effect on the clinical manifestations, radiological characteristics, and disease severity of human immunodeficiency virus (HIV)-associated Talaromyces marneffei infection. The clinical manifestations, chest computed tomography (CT) images, and disease severity were compared between 14 patients with culture-confirmed T. marneffei infections who received cART and 38 patients who did not receive cART. Clinical manifestations included high fever (>38°C), cough, shortness of breath, chills, and skin rash. Chest CT scans were evaluated for the presence of ground-glass opacities, consolidation, miliary nodules, nodules, masses, cavitation, pericardial effusion, pleural effusion, mediastinal lymphadenitis, and the distribution of parenchymal abnormalities. Disease severity was estimated by clinical manifestations and chest CT findings. Fever (>38°C), cough, shortness of breath, and chills were significantly less frequent in patients who received cART than in those who did not receive cART (P < 0.05). The frequencies of miliary nodules, mediastinal lymphadenitis, and the proportion of diffuse lesions were significantly lower in patients who received cART than in those who did not receive cART (P < 0.05). The disease severity was significantly decreased in patients who received cART compared with patients who did not receive cART (P < 0.001). T. marneffei-infected patients who received cART had fewer clinical manifestations and decreased disease severity compared with those who did not receive this treatment. The use of cART is associated with modified chest CT characteristics in HIV-associated T. marneffei infections.
Collapse
Affiliation(s)
- Xiudong Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qinqin Yan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yi Zhan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunzi Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Wang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin Microbiol Rev 2021; 34:e00115-19. [PMID: 33239310 PMCID: PMC7690944 DOI: 10.1128/cmr.00115-19] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is known to infect a considerable number of mammalian and avian species and a substantial proportion of the world's human population. The parasite has an impressive ability to disseminate within the host's body and employs various tactics to overcome the highly regulatory blood-brain barrier and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated without any obvious ill effects. However, primary infection in immunosuppressed patients can result in acute cerebral or systemic disease, and reactivation of latent tissue cysts can lead to a deadly outcome. It is imperative that treatment of life-threatening toxoplasmic encephalitis is timely and effective. Several therapeutic and prophylactic regimens have been used in clinical practice. Current approaches can control infection caused by the invasive and highly proliferative tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other limitations are associated with the standard pyrimethamine-based therapy, and effective vaccines are unavailable. In this review, the epidemiology, economic impact, pathophysiology, diagnosis, and management of cerebral toxoplasmosis are discussed, and critical areas for future research are highlighted.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Christina M Marra
- Departments of Neurology and Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
| |
Collapse
|
5
|
Jin Y, Yao Y, El-Ashram S, Tian J, Shen J, Ji Y. The Neurotropic Parasite Toxoplasma gondii Induces Astrocyte Polarization Through NFκB Pathway. Front Med (Lausanne) 2019; 6:267. [PMID: 31803748 PMCID: PMC6877604 DOI: 10.3389/fmed.2019.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022] Open
Abstract
Background:Toxoplasma gondii is a protozoan parasite that chronically infects nearly one-third of the world's human population. In immunosuppressed individuals and fetus, infection with T. gondii contributes to a series of devastating conditions, including toxoplasmic encephalitis (TE), which is characterized by neuron damage in the central nervous system (CNS). Astrocyte polarization is currently found in some neurodegenerative diseases, and A1 subtype of astrocyte leads to neuron apoptosis. However, little information has been available on the role of astrocyte polarization in TE. Methods: In the present study, we established a mouse model to study TE and detected A1 astrocyte in the brains of mice with TE. Expression level of A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA) and Western blotting. Primary mouse astrocytes were incubated with different concentrations of T. gondii excreted-secreted antigens (TgESAs) in vitro. Expression level of C3 and A1 astrocyte-specific transcription levels were assessed using Western blotting and qRT-PCR, respectively. Bay11-7082 was used to study nuclear factor (NF) κB pathway in TgESA-induced astrocyte polarization. Results: In mice with TE, the proportion of A1 astrocyte (GFAP+C3+) increased significantly. The results of in vitro study showed that TgESAs induced astrocyte polarization to A1 subtype. Blocking of NFκB pathway by Bay11-7082 inhibited TgESA-induced astrocyte polarization. Conclusions: Our preliminary study showed the involvement of A1 astrocyte in the process of TE in mice, and TgESAs could trigger astrocyte to polarize to A1 subtype. These findings suggest a new mechanism underlying the neuropathogenesis induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Jin
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yong Yao
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Jiaming Tian
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yongsheng Ji
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Dard C, Marty P, Brenier-Pinchart MP, Garnaud C, Fricker-Hidalgo H, Pelloux H, Pomares C. Management of toxoplasmosis in transplant recipients: an update. Expert Rev Anti Infect Ther 2018; 16:447-460. [DOI: 10.1080/14787210.2018.1483721] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Céline Dard
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex France
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209 - CNRS UMR5309, Université Grenoble Alpes, Grenoble France
| | - Pierre Marty
- Faculté de Médecine, Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, 06202 Nice, France Université de la Côte d’Azur, Nice, France
- 38043, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice, France
| | - Marie-Pierre Brenier-Pinchart
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex France
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209 - CNRS UMR5309, Université Grenoble Alpes, Grenoble France
| | - Cécile Garnaud
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex France
| | - Hélène Fricker-Hidalgo
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex France
| | - Hervé Pelloux
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex France
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209 - CNRS UMR5309, Université Grenoble Alpes, Grenoble France
| | - Christelle Pomares
- Faculté de Médecine, Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, 06202 Nice, France Université de la Côte d’Azur, Nice, France
- 38043, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice, France
| |
Collapse
|
7
|
Abstract
Central nervous system infection by Toxoplasma gondii, or Toxoplasma encephalitis, is the most common cause of brain mass lesions in human immunodeficiency virus (HIV)-infected patients. It usually presents as one or more brain abscesses, but it can also cause a diffuse encephalitis or ventriculitis. Individuals who are Toxoplasma immunoglobulin G-seropositive, who have peripheral blood CD4+ T-cell concentrations below 200/μL, are not on antiretroviral therapy, and are not taking trimethoprim-sulfamethoxazole to prevent Pneumocystis pneumonia, are at particular risk for Toxoplasma encephalitis. Neuroimaging typically shows round, isodense or hyperdense lesions in the hemispheric gray-white junction, deep white matter, or basal ganglia that enhance with contrast in a ring, nodular, or homogeneous pattern. In appropriate patients, response to an empiric treatment trial can establish the diagnosis. Immune reconstitution inflammatory syndrome is uncommon in HIV-infected patients treated for Toxoplasma encephalitis and combination antiretroviral therapy is an integral part of toxoplasmosis treatment.
Collapse
Affiliation(s)
- Christina M Marra
- Departments of Neurology and Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
8
|
Rutaganira FU, Barks J, Dhason MS, Wang Q, Lopez MS, Long S, Radke JB, Jones NG, Maddirala AR, Janetka JW, El Bakkouri M, Hui R, Shokat KM, Sibley LD. Inhibition of Calcium Dependent Protein Kinase 1 (CDPK1) by Pyrazolopyrimidine Analogs Decreases Establishment and Reoccurrence of Central Nervous System Disease by Toxoplasma gondii. J Med Chem 2017; 60:9976-9989. [PMID: 28933846 DOI: 10.1021/acs.jmedchem.7b01192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium dependent protein kinase 1 (CDPK1) is an essential enzyme in the opportunistic pathogen Toxoplasma gondii. CDPK1 controls multiple processes that are critical to the intracellular replicative cycle of T. gondii including secretion of adhesins, motility, invasion, and egress. Remarkably, CDPK1 contains a small glycine gatekeeper residue in the ATP binding pocket making it sensitive to ATP-competitive inhibitors with bulky substituents that complement this expanded binding pocket. Here we explored structure-activity relationships of a series of pyrazolopyrimidine inhibitors of CDPK1 with the goal of increasing selectivity over host enzymes, improving antiparasite potency, and improving metabolic stability. The resulting lead compound 24 exhibited excellent enzyme inhibition and selectivity for CDPK1 and potently inhibited parasite growth in vitro. Compound 24 was also effective at treating acute toxoplasmosis in the mouse, reducing dissemination to the central nervous system, and decreasing reactivation of chronic infection in severely immunocompromised mice. These findings provide proof of concept for the development of small molecule inhibitors of CDPK1 for treatment of CNS toxoplasmosis.
Collapse
Affiliation(s)
- Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - Jennifer Barks
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Mary Savari Dhason
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Michael S Lopez
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - Shaojun Long
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Amarendar R Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto , MaRS South Tower, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto , MaRS South Tower, 101 College St, Toronto, ON M5G 1L7, Canada.,Toronto General Hospital Research Institute , 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Incidence, presentation and outcome of toxoplasmosis in HIV infected in the combination antiretroviral therapy era. J Infect 2017; 75:263-273. [PMID: 28579301 DOI: 10.1016/j.jinf.2017.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/10/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND HIV-associated incidence and prognosis of cerebral toxoplasmosis (CTX) is not well established during later years. METHODS From the Danish HIV Cohort Study, we identified 6325 HIV-infected individuals. We assessed incidence, mortality, predictive and prognostic factors of CTX during the pre-combination antiretroviral therapy (pre-cART; 1995-1996) and cART-era (1997-2014). Adjusted incidence rate ratios (aIRR), mortality rate ratios (aMRR) and 95% confidence intervals (CI) were assessed using Poisson regression analysis. RESULTS CTX IR was 1.17/1000 PYR (95% CI 0.93-1.47). We observed no change in CTX-risk in the first year after HIV-diagnosis, but a substantial reduction in mortality in the first 3 months after CTX diagnosis when comparing the cART-era to the pre-cART-era; {(aIRR: 0.79; 95% CI: 0.37-1.72) (aMRR: 0.15; 95% CI: 0.06-0.38)}. For individuals surviving the first year after HIV-diagnosis or the first 3 months after CTX-diagnosis, IRR and MRR had declined to minimal levels {(aIRR: 0.06; 95% CI: 0.03-0.10); (aMRR: 0.02; 95% CI: 0.01-0.05)}. Three years after CTX-diagnosis 30% of the patients still had neurological deficits. CONCLUSION Although, CTX remains an important cause of morbidity and mortality in the cART-era, with high prevalence of neurological sequelae, incidence and mortality has largely declined, especially among those surviving the first year after diagnosis.
Collapse
|
10
|
Dard C, Fricker-Hidalgo H, Brenier-Pinchart MP, Pelloux H. Relevance of and New Developments in Serology for Toxoplasmosis. Trends Parasitol 2016; 32:492-506. [PMID: 27167666 DOI: 10.1016/j.pt.2016.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/26/2022]
Abstract
Toxoplasmosis is a widespread parasitic disease caused by the intracellular parasite Toxoplasma gondii with a wide spectrum of clinical outcomes. The biological diagnosis of toxoplasmosis is often difficult and of paramount importance because clinical features are not sufficient to discriminate between toxoplasmosis and other illnesses. Serological tests are the most widely used biological tools for the diagnosis of toxoplasmosis worldwide. This review focuses on the crucial role of serology in providing answers to the most important questions related to the epidemiology and diagnosis of toxoplasmosis in human pathology. Notwithstanding their undeniable importance, serological tools need to be continuously improved and the interpretation of the ensuing results remains complex in many circumstances.
Collapse
Affiliation(s)
- Céline Dard
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France; Institut Albert Bonniot, INSERM U1209 - CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.
| | - Hélène Fricker-Hidalgo
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France
| | - Marie-Pierre Brenier-Pinchart
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France; Institut Albert Bonniot, INSERM U1209 - CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Hervé Pelloux
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Grenoble Alpes, Grenoble, France; Institut Albert Bonniot, INSERM U1209 - CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
Cabral CM, Tuladhar S, Dietrich HK, Nguyen E, MacDonald WR, Trivedi T, Devineni A, Koshy AA. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii. PLoS Pathog 2016; 12:e1005447. [PMID: 26895155 PMCID: PMC4760770 DOI: 10.1371/journal.ppat.1005447] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii, a common brain-tropic parasite, is capable of infecting most nucleated cells, including astrocytes and neurons, in vitro. Yet, in vivo, Toxoplasma is primarily found in neurons. In vitro data showing that interferon-γ-stimulated astrocytes, but not neurons, clear intracellular parasites suggest that neurons alone are persistently infected in vivo because they lack the ability to clear intracellular parasites. Here we test this theory by using a novel Toxoplasma-mouse model capable of marking and tracking host cells that directly interact with parasites, even if the interaction is transient. Remarkably, we find that Toxoplasma shows a strong predilection for interacting with neurons throughout CNS infection. This predilection remains in the setting of IFN-γ depletion; infection with parasites resistant to the major mechanism by which murine astrocytes clear parasites; or when directly injecting parasites into the brain. These findings, in combination with prior work, strongly suggest that neurons are not incidentally infected, but rather they are Toxoplasma's primary in vivo target.
Collapse
Affiliation(s)
- Carla M Cabral
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Shraddha Tuladhar
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Hans K Dietrich
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Elizabeth Nguyen
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Wes R MacDonald
- Undergraduate Biology Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Tapasya Trivedi
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Asha Devineni
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America.,Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America.,Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
12
|
Toxoplasma gondii: the effect of fluconazole combined with sulfadiazine and pyrimethamine against acute toxoplasmosis in murine model. Exp Parasitol 2012; 133:294-9. [PMID: 23270807 DOI: 10.1016/j.exppara.2012.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an important opportunistic pathogen for immunocompromised patients and responsible for toxoplasmic encephalitis, which is often lethal. Treatment for this infection is limited to a restricted therapeutic arsenal. In this work we tested the combination of fluconazole with the current treatment for acute toxoplasmosis on the murine model in vivo. Different experimental groups were treated with combinations of sulfadiazine plus pyrimethamine with fluconazole and pyrimethamine with fluconazole. Fluconazole is an important antifungal triazole used against others CNS related opportunistic pathogens such as Cryptococcus neoformans and Candida spp. The combinations of fluconazole plus sulfadiazine and pyrimethamine or fluconazole plus pyrimethamine were remarkably effective against T. gondii in vivo. The 10-day treatment with 10mg/kg/day of fluconazole combined with 40/1mg/kg/day sulfadiazine and pyrimethamine resulted in 93% survival of CF1 mice acutely infected with the highly virulent T. gondii RH strain, versus 36% of mice treated with just sulfadiazine and pyrimethamine. Combinations of fluconazole with lower doses of sulfadiazine and pyrimethamine or with just pyrimethamine were also efficient in reducing the mortality of mice compared with the treatment without fluconazole. The results obtained are promising for the treatment of human toxoplasmosis and point to the need to extend these studies to other murine models.
Collapse
|