1
|
Ramaiah KB, Suresh I, Nesakumar N, Sai Subramanian N, Rayappan JBB. "Urinary tract infection: Conventional testing to developing Technologies". Clin Chim Acta 2024; 565:119979. [PMID: 39341530 DOI: 10.1016/j.cca.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Urinary tract infections (UTIs) present an escalating global health concern, precipitating increased hospitalizations and antibiotic utilization, thereby fostering the emergence of antimicrobial resistance. Current diagnostic modalities exhibit protracted timelines and substantial financial burdens, necessitating specialized infrastructures. Addressing these impediments mandates the development of a precise diagnostic paradigm to expedite identification and augment antibiotic stewardship. The application of biosensors, recognized for their transformative efficacy, emerges as a promising resolution. Recent strides in biosensor technologies have introduced pioneering methodologies, yielding pertinent biosensors and integrated systems with significant implications for point-of-care applications. This review delves into historical perspectives, furnishing a comprehensive delineation of advancements in UTI diagnostics, disease etiology, and biomarkers, underscoring the potential merits of these innovations for optimizing patient care.
Collapse
Affiliation(s)
- Kavi Bharathi Ramaiah
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Sai Subramanian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Biofilm Biology Lab & Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
2
|
Sousa LGV, Almeida C, Muzny CA, Cerca N. Development of a Prevotella bivia PNA probe and a multiplex approach to detect three relevant species in bacterial vaginosis-associated biofilms. NPJ Biofilms Microbiomes 2023; 9:42. [PMID: 37353508 DOI: 10.1038/s41522-023-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection worldwide. We developed a peptide nucleic acid (PNA) probe targeting Prevotella bivia, a common BV-associated bacteria, and optimized a multiplex approach for detection of Gardnerella spp., P. bivia and Fannyhessea vaginae. Our P. bivia PNA probe specifically detected the target species, and the optimized multiplex approach was able to detect the presence of the three species in multi-species BV biofilms.
Collapse
Affiliation(s)
- Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Carina Almeida
- INIAV, IP- National Institute for Agrarian and Veterinary Research, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Portugal.
| |
Collapse
|
3
|
Allkja J, Goeres DM, Azevedo AS, Azevedo NF. Interactions of microorganisms within a urinary catheter polymicrobial biofilm model. Biotechnol Bioeng 2023; 120:239-249. [PMID: 36123299 DOI: 10.1002/bit.28241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/11/2022]
Abstract
Biofilms are often polymicrobial in nature, which can impact their behavior and overall structure, often resulting in an increase in biomass and enhanced antimicrobial resistance. Using plate counts and locked nucleic acid/2'-O-methyl-RNA fluorescence in situ hybridization (LNA/2'OMe-FISH), we studied the interactions of four species commonly associated with catheter-associated urinary tract infections (CAUTI): Enterococcus faecalis, Escherichia coli, Candida albicans, and Proteus mirabilis. Eleven combinations of biofilms were grown on silicone coupons placed in 24-well plates for 24 h, 37°C, in artificial urine medium (AUM). Results showed that P. mirabilis was the dominant species and was able to inhibit both E. coli and C. albicans growth. In the absence of P. mirabilis, an antagonistic relationship between E. coli and C. albicans was observed, with the former being dominant. E. faecalis growth was not affected in any combination, showing a more mutualistic relationship with the other species. Imaging results correlated with the plate count data and provided visual verification of species undetected using the viable plate count. Moreover, the three bacterial species showed overall good repeatability SD (Sr ) values (0.1-0.54) in all combinations tested, whereas C. albicans had higher repeatability Sr values (0.36-1.18). The study showed the complexity of early-stage interactions in polymicrobial biofilms. These interactions could serve as a starting point when considering targets for preventing or treating CAUTI biofilms containing these species.
Collapse
Affiliation(s)
- Jontana Allkja
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal.,Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Darla M Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Andreia S Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal.,Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular (IPATIMUP), Universidade do Porto, Porto, Portugal
| | - Nuno F Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal.,Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Barbosa VB, Rodrigues CF, Cerqueira L, Miranda JM, Azevedo NF. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front Bioeng Biotechnol 2022; 10:987669. [PMID: 36213081 PMCID: PMC9539416 DOI: 10.3389/fbioe.2022.987669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most prevalent healthcare-associated infection is the urinary tract infection (UTI), caused by opportunistic pathogens such as Candida albicans or non-albicans Candida species (NACS). Urine culture methods are routinely used for UTI diagnostics due to their specificity, sensitivity and low-cost. However, these methods are also laborious, time- and reagent-consuming. Therefore, diagnostic methods relying on nucleic acids have been suggested as alternatives. Nucleic acid-based methods can provide results within 24 h and can be adapted to point-of-care (POC) detection. Here, we propose to combine fluorescence in situ hybridization (FISH) with a microfluidic platform for the detection of Candida spp. As a case study we used C. tropicalis, which is reported as the second most common NACS urine isolate obtained from patients suspected with UTI. The microfluidic platform proposed in this study relies on hydrodynamic trapping, and uses physical barriers (e.g., microposts) for the separation of target cells from the suspension. Using a specific peptide nucleic acid (PNA) probe, the FISH procedure was applied onto previously trapped C. tropicalis cells present inside the microfluidic platform. Fluorescence signal intensity of hybridized cells was captured directly under the epifluorescence microscope. Overall, the PNA probe successfully detected C. tropicalis in pure culture and artificial urine (AU) using FISH combined with the microfluidic platform. Our findings reveal that FISH using nucleic acid mimics (PNA) in combination with microfluidics is a reliable method for the detection of microorganisms such as C. tropicalis. As such, this work provides the basis for the development of a POC detection platform in the future.
Collapse
Affiliation(s)
- Violina Baranauskaite Barbosa
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Célia F. Rodrigues
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - João M. Miranda
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- CEFT–Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
6
|
Sousa LGV, Castro J, França A, Almeida C, Muzny CA, Cerca N. A New PNA-FISH Probe Targeting Fannyhessea vaginae. Front Cell Infect Microbiol 2021; 11:779376. [PMID: 34869078 PMCID: PMC8637528 DOI: 10.3389/fcimb.2021.779376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection in women of reproductive age and has been associated with serious health complications, mainly in pregnant women. It is characterized by a decrease in the number of Lactobacillus species in the healthy vaginal microbiota and an overgrowth of strict and facultative anaerobic bacteria that develop a polymicrobial biofilm. Despite over 60 years of research investigating BV, its etiology is not fully understood. Gardnerella spp. is a crucial microorganism that contributes to the formation of the biofilm and the development of BV, but the role of other BV-associated bacteria is not clear. Nevertheless, Fannyhessea vaginae (previously known as Atopobium vaginae) is a highly specific species for BV, and co-colonization with Gardnerella is thought to be a very specific diagnostic marker. The diagnosis of BV still presents some limitations, since currently used methods often fail to accurately detect BV. This work aims to develop a novel peptide nucleic acid (PNA) probe targeting F. vaginae. This probe was further validated in a multiplex assay, which included a Gardnerella-specific PNA probe, as a possible method for diagnosis of BV, and was compared with quantification by qPCR. The new PNA probe showed excellent sensitivity and specificity and could discriminate F. vaginae-Gardnerella biofilms, confirming the potential to be used for the detection of BV-associated pathogens.
Collapse
Affiliation(s)
- Lúcia G V Sousa
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| | - Carina Almeida
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal.,INIAV, IP- National Institute for Agrarian and Veterinary Research, Vila do Conde, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Oliveira R, Almeida C, Azevedo NF. Detection of Microorganisms by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid. Methods Mol Biol 2021; 2105:217-230. [PMID: 32088873 DOI: 10.1007/978-1-0716-0243-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a 30-year-old technology that has evolved continuously and is now one of the most well-established molecular biology techniques. Traditionally, DNA probes are used for in situ hybridization. However, synthetic molecules are emerging as very promising alternatives, providing better hybridization performance and making FISH procedures easier and more efficient. In this chapter, we describe a universal FISH protocol, using nucleic acid probes, for the detection of bacteria. This protocol should be easily applied to different microorganisms as a way of identifying in situ relevant microorganisms (including pathogens) and their distribution patterns in different types of samples.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Teixeira H, Sousa AL, Azevedo AS. Bioinformatic Tools and Guidelines for the Design of Fluorescence In Situ Hybridization Probes. Methods Mol Biol 2021; 2246:35-50. [PMID: 33576981 DOI: 10.1007/978-1-0716-1115-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that allows the detection of microorganisms in diverse types of samples (e.g., clinical, food, environmental samples, and biofilm communities). The FISH probe design is an essential step in this technique. For this, two strategies can be used, the manual form based on multiple sequence alignment to identify conserved regions and programs/software specifically developed for the selection of the sequence of the probe. Additionally, databases/software for the theoretical evaluation of the probes in terms of specificity, sensitivity, and thermodynamic parameters (melting temperature and Gibbs free energy change) are used. The purpose of this chapter is to describe the essential steps and guidelines for the design of FISH probes (e.g., DNA and Nucleic Acid Mimic (NAM) probes), and its theoretical evaluation through the application of diverse bioinformatic tools.
Collapse
Affiliation(s)
- Helena Teixeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
9
|
Grainha T, Magalhães AP, Melo LDR, Pereira MO. Pitfalls Associated with Discriminating Mixed-Species Biofilms by Flow Cytometry. Antibiotics (Basel) 2020; 9:antibiotics9110741. [PMID: 33121057 PMCID: PMC7694060 DOI: 10.3390/antibiotics9110741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Since biofilms are ubiquitous in different settings and act as sources of disease for humans, reliable methods to characterize and quantify these microbial communities are required. Numerous techniques have been employed, but most of them are unidirectional, labor intensive and time consuming. Although flow cytometry (FCM) can be a reliable choice to quickly provide a multiparametric analysis, there are still few applications on biofilms, and even less on the study of inter-kingdom communities. This work aimed to give insights into the application of FCM in order to more comprehensively analyze mixed-species biofilms, formed by different Pseudomonas aeruginosa and Candida albicans strains, before and after exposure to antimicrobials. For comparison purposes, biofilm culturability was also assessed determining colony-forming units. The results showed that some aspects, namely the microbial strain used, the morphological state of the cells and the biofilm matrix, make the accurate analysis of FCM data difficult. These aspects were even more challenging when double-species biofilms were being inspected, as they could engender data misinterpretations. The outcomes draw our attention towards the need to always take into consideration the characteristics of the biofilm samples to be analyzed through FCM, and undoubtedly link to the need for optimization of the processes tailored for each particular case study.
Collapse
Affiliation(s)
| | | | - Luís D. R. Melo
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| | - Maria O. Pereira
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| |
Collapse
|
10
|
Quantitative assessment of individual populations within polymicrobial biofilms. Sci Rep 2018; 8:9494. [PMID: 29934504 PMCID: PMC6015014 DOI: 10.1038/s41598-018-27497-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023] Open
Abstract
Selecting appropriate tools providing reliable quantitative measures of individual populations in biofilms is critical as we now recognize their true polymicrobial and heterogeneous nature. Here, plate count, quantitative real-time polymerase chain reaction (q-PCR) and peptide nucleic acid probe-fluorescence in situ hybridization (PNA-FISH) were employed to quantitate cystic fibrosis multispecies biofilms. Growth of Pseudomonas aeruginosa, Inquilinus limosus and Dolosigranulum pigrum was assessed in dual- and triple-species consortia under oxygen and antibiotic stress. Quantification methods, that were previously optimized and validated in planktonic consortia, were not always in agreement when applied in multispecies biofilms. Discrepancies in culture and molecular outcomes were observed, particularly for triple-species consortia and antibiotic-stressed biofilms. Some differences were observed, such as the higher bacterial counts obtained by q-PCR and/or PNA-FISH (≤4 log10 cells/cm2) compared to culture. But the discrepancies between PNA-FISH and q-PCR data (eg D. pigrum limited assessment by q-PCR) demonstrate the effect of biofilm heterogeneity in method’s reliability. As the heterogeneity in biofilms is a reflection of a myriad of variables, tailoring an accurate picture of communities´ changes is crucial. This work demonstrates that at least two, but preferentially three, quantification techniques are required to obtain reliable measures and take comprehensive analysis of polymicrobial biofilm-associated infections.
Collapse
|
11
|
Azevedo AS, Almeida C, Gomes LC, Ferreira C, Mergulhão FJ, Melo LF, Azevedo NF. An in vitro model of catheter-associated urinary tract infections to investigate the role of uncommon bacteria on the Escherichia coli microbial consortium. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43:263-293. [PMID: 28129707 DOI: 10.3109/1040841x.2016.1169990] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early identification of microbial pathogens is essential for rational and conservative antibiotic use especially in the case of known regional resistance patterns. Here, we describe fluorescence in situ hybridization (FISH) as one of the rapid methods for easy identification of microbial pathogens, and its advantages and disadvantages for the diagnosis of pathogens in human infections in the laboratory diagnostic routine. Binding of short fluorescence-labeled DNA or nucleic acid-mimicking PNA probes to ribosomes of infectious agents with consecutive analysis by fluorescence microscopy allows identification of bacterial and eukaryotic pathogens at genus or species level. FISH analysis leads to immediate differentiation of infectious agents without delay due to the need for microbial culture. As a microscopic technique, FISH has the unique potential to provide information about spatial resolution, morphology and identification of key pathogens in mixed species samples. On-going automation and commercialization of the FISH procedure has led to significant shortening of the time-to-result and increased test reliability. FISH is a useful tool for the rapid initial identification of microbial pathogens, even from primary materials. Among the rapidly developing alternative techniques, FISH serves as a bridging technology between microscopy, microbial culture, biochemical identification and molecular diagnostic procedures.
Collapse
Affiliation(s)
- Hagen Frickmann
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | - Andreas Erich Zautner
- b Department of Medical Microbiology, University Medical Center Göttingen , Göttingen , Germany
| | - Annette Moter
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Judith Kikhney
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Ralf Matthias Hagen
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | | | - Sven Poppert
- e Institute for Medical Microbiology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
13
|
Azevedo AS, Almeida C, Pereira B, Melo LF, Azevedo NF. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents. BIOFOULING 2016; 32:227-241. [PMID: 26901701 DOI: 10.1080/08927014.2015.1124096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.
Collapse
Affiliation(s)
- Andreia S Azevedo
- a Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Faculty of Engineering, Department of Chemical Engineering , University of Porto , Porto , Portugal
- b Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Odense M , Denmark
| | - Carina Almeida
- a Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Faculty of Engineering, Department of Chemical Engineering , University of Porto , Porto , Portugal
- c Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering , Universidade do Minho , Braga , Portugal
| | - Bruno Pereira
- a Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Faculty of Engineering, Department of Chemical Engineering , University of Porto , Porto , Portugal
| | - Luís F Melo
- a Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Faculty of Engineering, Department of Chemical Engineering , University of Porto , Porto , Portugal
| | - Nuno F Azevedo
- a Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Faculty of Engineering, Department of Chemical Engineering , University of Porto , Porto , Portugal
| |
Collapse
|
14
|
Silvia F, Joana B, Pedro M, Céu F, Jesper W, Filipe AN. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 2015; 99:3961-9. [DOI: 10.1007/s00253-015-6389-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
15
|
Kumar S, Pandey S, Pandey AK. In vitro antibacterial, antioxidant, and cytotoxic activities of Parthenium hysterophorus and characterization of extracts by LC-MS analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495154. [PMID: 24895583 PMCID: PMC4033558 DOI: 10.1155/2014/495154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Present work reports the biological activities of P. hysterophorus leaf, stem, flower, and root. Dried samples were sequentially extracted with many solvents. Hexane (HX), benzene (BZ), and chloroform (CH) extracts of leaf showed considerable antibacterial activity against Streptococcus mutans (MTCC 497), Proteus vulgaris (MTCC 7299), and Salmonella typhi (MTCC 3917). Flower extracts exhibited presence of higher amount of flavonoids (13.9-59.6 μgQE/mg) followed by leaf, stem, and root. Stem (HX, BZ, and CH), leaf ethanol (ET), and root (HX, BZ, and CH) fractions showed noticeable antioxidant capacity in phosphomolybdate assay. Most of the extracts demonstrated beta carotene bleaching inhibition capability. BZ, ethyl acetate (EA), and ET fractions of leaves, stem aqueous (AQ), and flower EA extracts showed membrane protective activities (40-55%). Middle fractions of the plant parts displayed moderate antihemolytic potential. Most of the flower extracts exhibited cytotoxic activity (80-100%) against lung and colon cancer cell lines. Root (HX and ET) and leaf ET extracts showed considerable inhibition (90-99%) of colon and ovary cancer cell lines. The LC-MS scan demonstrated presence of different compounds showing 3-20 min retention time. The study revealed considerable antibacterial, antioxidant, lipo-protective, antihemolytic, and anticancer potential in all parts of P. hysterophorus.
Collapse
Affiliation(s)
- Shashank Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sanjay Pandey
- Instrumentation Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Abhay K. Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
16
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
17
|
Cerqueira L, Oliveira JA, Nicolau A, Azevedo NF, Vieira MJ. Biofilm formation with mixed cultures of Pseudomonas aeruginosa/Escherichia coli on silicone using artificial urine to mimic urinary catheters. BIOFOULING 2013; 29:829-40. [PMID: 23837894 DOI: 10.1080/08927014.2013.807913] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study, single and dual species biofilms of Pseudomonas aeruginosa and Escherichia coli, two common bacteria associated with urinary tract infections, were formed in silicon coupons immersed in artificial urine medium. In single species experiments, E. coli appeared to form biofilms more easily than P. aeruginosa. In mixed biofilms, both species apparently benefited from the presence of the other, as the average Log total cells cm(-2) of mixed biofilms (7.29 cells cm(-2)) was higher than obtained for single cultures (6.99 cells cm(-2)). However, the use of selective media seemed to indicate that P. aeruginosa was the only microorganism to benefit in mixed biofilms (Log 7 CFU of P. aeruginosa cm(-2), compared to Log 6 CFU cm(-2) obtained in pure cultures). Peptide nucleic acid-fluorescence in situ hybridization combined with confocal laser scanning microscopy confirmed that E. coli was indeed being outnumbered by P. aeruginosa at 48 h. Whereas E. coli is the main causative agent of catheter-associated urinary tract infections, the results from this study indicate that the reason for the higher prevalence of this microorganism is not related to an enhanced ability to form biofilm and outcompete other species that may also be present, but rather to a better ability to form single-species biofilms possibly due to a more frequent access to the catheter surface.
Collapse
Affiliation(s)
- Laura Cerqueira
- Centre of Biological Engineering, IBB - Institute for Biotechnology and Bioengineering, University of Minho, Braga, Portugal
| | | | | | | | | |
Collapse
|