1
|
Mokrani D, Luyt CE. Effective strategies for managing trimethoprim-sulfamethoxazole and levofloxacin-resistant Stenotrophomonas maltophilia infections: bridging the gap between scientific evidence and clinical practice. Curr Opin Infect Dis 2024; 37:554-564. [PMID: 39082087 DOI: 10.1097/qco.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
PURPOSE OF REVIEW To discuss the therapeutic options available for the management of difficult-to-treat strains of Stenotrophomonas maltophilia ( Sma ), namely those resistant to trimethoprim-sulfamethoxazole and fluoroquinolones. RECENT FINDINGS Recent pharmacological studies have highlighted the fact that current breakpoints for first-line antibiotics against Sma are too high. In light of these data, it is likely that the prevalence of difficult-to-treat (DTR) Sma is underestimated worldwide. Two promising alternatives for treating DTR strains are cefiderocol and the combination of aztreonam and an L2 inhibitor. However, clinical trials are currently very limited for these antibiotics and no comparative studies have been carried out to date. It is important to note that the clinical efficacy of cefiderocol appears to be inferior to that initially anticipated from in-vitro and animal studies. Consequently, minocycline and ceftazidime may remain viable options if they are used against strains with a low minimum inhibitory concentration. We advise against the use of intravenous polymyxins and tigecycline. Finally, recent literature does not support the systematic use of combination therapy or long-course treatments. In the coming years, phage therapy may become a promising approach against DTR Sma infections. SUMMARY Overall, clinical comparative studies focused on DTR strains are required in order to provide more accurate and actionable information for therapeutic decisions.
Collapse
Affiliation(s)
- David Mokrani
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière
- Sorbonne Université, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
2
|
Sapula SA, Hart BJ, Siderius NL, Amsalu A, Blaikie JM, Venter H. Multidrug-resistant Stenotrophomonas maltophilia in residential aged care facilities: An emerging threat. Microbiologyopen 2024; 13:e1409. [PMID: 38682784 PMCID: PMC11057060 DOI: 10.1002/mbo3.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant (MDR), Gram-negative bacterium intrinsically resistant to beta-lactams, including last-resort carbapenems. As an opportunistic pathogen, it can cause serious healthcare-related infections. This study assesses the prevalence, resistance profiles, and genetic diversity of S. maltophilia isolated from residential aged care facilities (RACFs). RACFs are known for their overuse and often inappropriate use of antibiotics, creating a strong selective environment that favors the development of bacterial resistance. The study was conducted on 73 S. maltophilia isolates recovered from wastewater and facility swab samples obtained from three RACFs and a retirement village. Phenotypic and genotypic assessments of the isolates revealed high carbapenem resistance, exemplifying their intrinsic beta-lactam resistance. Alarmingly, 49.3% (36/73) of the isolates were non-wild type for colistin, with minimum inhibitory concentration values of > 4 mg/L, and 11.0% (8/73) were resistant to trimethoprim-sulfamethoxazole. No resistance mechanisms were detected for either antimicrobial. Genotypic assessment of known lineages revealed isolates clustering with Sm17 and Sm18, lineages not previously reported in Australia, suggesting the potential ongoing spread of MDR S. maltophilia. Lastly, although only a few isolates were biocide tolerant (2.7%, 2/73), their ability to grow in high concentrations (64 mg/L) of triclosan is concerning, as it may be selecting for their survival and continued dissemination.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Department of Medical MicrobiologyUniversity of GondarGondarEthiopia
| | - Jack M. Blaikie
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Chen C, Shi J, Wang D, Kong P, Wang Z, Liu Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit Rev Microbiol 2024; 50:267-284. [PMID: 36890767 DOI: 10.1080/1040841x.2023.2186215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 03/10/2023]
Abstract
The widespread antimicrobial resistance (AMR) calls for the development of new antimicrobial strategies. Antibiotic adjuvant rescues antibiotic activity and increases the life span of the antibiotics, representing a more productive, timely, and cost-effective strategy in fighting drug-resistant pathogens. Antimicrobial peptides (AMPs) from synthetic and natural sources are considered new-generation antibacterial agents. Besides their direct antimicrobial activity, growing evidence shows that some AMPs effectively enhance the activity of conventional antibiotics. The combinations of AMPs and antibiotics display an improved therapeutic effect on antibiotic-resistant bacterial infections and minimize the emergence of resistance. In this review, we discuss the value of AMPs in the age of resistance, including modes of action, limiting evolutionary resistance, and their designing strategies. We summarise the recent advances in combining AMPs and antibiotics against antibiotic-resistant pathogens, as well as their synergistic mechanisms. Lastly, we highlight the challenges and opportunities associated with the use of AMPs as potential antibiotic adjuvants. This will shed new light on the deployment of synergistic combinations to address the AMR crisis.
Collapse
Affiliation(s)
- Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Pan Kong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Nair VV, Smyth HDC. Inhalable Excipient-Free Dry Powder of Tigecycline for the Treatment of Pulmonary Infections. Mol Pharm 2023; 20:4640-4653. [PMID: 37606919 DOI: 10.1021/acs.molpharmaceut.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Tigecycline (TIG) is a broad-spectrum antibiotic that has been approved for the treatment of a number of complicated infections, including community-acquired bacterial pneumonia. Currently it is available only as an intravenous injection that undergoes rapid chemical degradation and limits the use to in-patient scenarios. The use of TIG as an inhaled dry powder inhaler may offer a promising treatment option for patients with multidrug-resistant respiratory tract infections, such as Stenotrophomonas maltophilia (S. maltophilia). This study explores the feasibility of engineering an inhaled powder formulation of TIG that could administer relevant doses at a wide range of inhalation flow rates while maintaining stability of this labile drug. Using air-jet milling, micronized TIG had excellent aerosolization efficiency, with over 80% of the device emitted dose being within the respirable range. TIG was also readily dispersed using different inhaler devices even when tested at different pressure drops and flow rates. Additionally, micronized TIG was stable for 6 months at 25 °C/60% RH and 40 °C/75% RH. Micronized TIG maintained a low minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of 0.8 μM and >0.5 μM, respectively in S. maltophilia cultures in vitro. These results strongly suggest that the micronization of TIG results in a stable and respirable formulation that can be delivered via the pulmonary route for the treatment of lung infections.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, Texas 78712, United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Bafandeh Zamanpour S, Yousefi Mashouf R, Salimizand H, Nazari M, Alikhani MY, Farajnia S. Relationship between antibiotic resistance with class 1 integron and SmeDEF efflux pump encoding genes in clinical isolates of Stenotrophomonas maltophilia. J Appl Genet 2023; 64:591-597. [PMID: 37574492 DOI: 10.1007/s13353-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant organism with an increasing frequency of hospital-acquired infections predominantly in developing countries. The purpose of this study was to determine the antibiotic resistance and frequency of the smeD, class 1 integron, and sul1 genes in clinical isolates of S. maltophilia in two Iranian provinces. From January 2020 to September 2021, 38 clinical isolates of S. maltophilia were collected from patients in hospitals in Tabriz and Sanandaj provinces of Iran. S. maltophilia isolates were confirmed by standard bacteriological tests and 16S rRNA gene PCR. Disk diffusion and the MIC test strip methods were used to determine the antibiotic resistance patterns. PCR was performed to investigate the presence of smeD, class 1 integron, and sul1 genes. The antimicrobial test for the isolated S. maltophilia showed a high level of sensitivity against most of the antibiotics used. Maximum sensitivity was recorded for ciprofloxacin (100% (38/38)) and levofloxacin 100% (38/38), followed by ceftazidime (97.36% (37/38)), trimethoprim-sulfamethoxazole (81.57% (31/38)), ticarcillin-clavulanate (60.52% (23/38)), and piperacillin-tazobactam (55.26% (21/38)). We observed a high prevalence of smeD (100% (38/38)) and class 1 integron (94.73% (36/38)) genes in the isolates, and none of the isolates carried the sul1 gene. The findings from this study indicate that resistance to trimethoprim-sulfamethoxazole was not observed, and still, trimethoprim-sulfamethoxazole is the best drug with desirable antimicrobial effect in the treatment of nosocomial infections caused by S. maltophilia strains. Despite the observation of a high number of class 1 integron, the sul1 gene was not observed, which indicates the role of this gene in high-level trimethoprim-sulfamethoxazole resistance and not having a role in low-level resistance. Based on our results, clinical microbiology laboratories need continuous surveillance of resistance rates to trimethoprim-sulfamethoxazole, because of the possibility of S. maltophilia acquiring trimethoprim-sulfamethoxazole-resistance by mobile gen elements.
Collapse
Affiliation(s)
| | | | - Himen Salimizand
- Microbiology Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Nazari
- Microbiology Department, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Microbiology Department, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Gibb J, Wong DW. Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies. Antibiotics (Basel) 2021; 10:antibiotics10101226. [PMID: 34680807 PMCID: PMC8532924 DOI: 10.3390/antibiotics10101226] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Stenotrophomonas maltophilia is an urgent global threat due to its increasing incidence and intrinsic antibiotic resistance. Antibiotic development has focused on carbapenem-resistant Enterobacteriaceae, Pseudomonas, and Acinetobacter, with approved antibiotics in recent years having limited activity for Stenotrophomonas. Accordingly, novel treatment strategies for Stenotrophomonas are desperately needed. We conducted a systemic literature review and offer recommendations based on current evidence for a treatment strategy of Stenotrophomonas infection.
Collapse
|
7
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
8
|
Roisin L, Melloul E, Woerther PL, Royer G, Decousser JW, Guillot J, Dannaoui E, Botterel F. Modulated Response of Aspergillus fumigatus and Stenotrophomonas maltophilia to Antimicrobial Agents in Polymicrobial Biofilm. Front Cell Infect Microbiol 2020; 10:574028. [PMID: 33123497 PMCID: PMC7573239 DOI: 10.3389/fcimb.2020.574028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction: The complexity of biofilms constitutes a therapeutic challenge and the antimicrobial susceptibility of fungal-bacterial biofilms remains poorly studied. The filamentous fungus Aspergillus fumigatus (Af) and the Gram-negative bacillus Stenotrophomonas maltophilia (Sm) can form biofilms and can be co-isolated from the airways of cystic fibrosis (CF) patients. We previously developed an in vitro biofilm model which highlighted the antibiosis effect of Sm on Af, which was dependent on the bacterial fitness. The aim of the present study was to investigate the in vitro susceptibility of Af and Sm in mono- or polymicrobial biofilms to five antimicrobial agents alone and in two-drug combinations. Methods: Af and Sm clinical reference strains and two strains from CF sputa were tested through a planktonic and biofilm approaches. Af, Sm, or Af-Sm susceptibilities to amphotericin B (AMB), itraconazole (ITC), voriconazole (VRC), levofloxacin (LVX), and rifampicin (RFN) were evaluated by conventional planktonic techniques, crystal violet, XTT, qPCR, and viable plate count. Results: Af planktonic cells and biofilms in formation were more susceptible to AMB, ITC, and VRC than Af mature biofilms. Af mature biofilms were susceptible to AMB, but not to ITC and VRC. Based on viable plate count, a lower concentration of LVX and RFN was required to reduce Sm cell numbers on biofilms in formation compared with mature biofilms. The antibiosis effect of Sm on Af growth was more pronounced for the association of CF strains that exhibited a higher fitness than the reference strains. In Af-Sm biofilms, the fungal susceptibility to AMB was increased compared with Af biofilms. In contrast, the bacterial susceptibility to LVX decreased in Af-Sm biofilms and was fungal biomass-dependent. The combination of AMB (64 μg/mL) with LVX or RFN (4 μg/mL) was efficient to impair Af and Sm growth in the polymicrobial biofilm. Conclusion: Sm increased the Af susceptibility to AMB, whereas Af protected Sm from LVX. Interactions between Af and Sm within biofilms modulate susceptibility to antimicrobial agents, opening the way to new antimicrobial strategies in CF patients.
Collapse
Affiliation(s)
- Lolita Roisin
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Elise Melloul
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Paul-Louis Woerther
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Bactériologie-Hygiène, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Guilhem Royer
- Unité de Bactériologie-Hygiène, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France.,LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Jean-Winoc Decousser
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Bactériologie-Hygiène, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Jacques Guillot
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Dannaoui
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP, Université Paris-Descartes, Paris, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Parasitologie-Mycologie, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France
| |
Collapse
|
9
|
Peters DL, McCutcheon JG, Dennis JJ. Characterization of Novel Broad-Host-Range Bacteriophage DLP3 Specific to Stenotrophomonas maltophilia as a Potential Therapeutic Agent. Front Microbiol 2020; 11:1358. [PMID: 32670234 PMCID: PMC7326821 DOI: 10.3389/fmicb.2020.01358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
A novel Siphoviridae phage specific to the bacterial species Stenotrophomonas maltophilia was isolated from a pristine soil sample and characterized as a second member of the newly established Delepquintavirus genus. Phage DLP3 possesses one of the broadest host ranges of any S. maltophilia phage yet characterized, infecting 22 of 29 S. maltophilia strains. DLP3 has a genome size of 96,852 bp and a G+C content of 58.4%, which is significantly lower than S. maltophilia host strain D1571 (G+C content of 66.9%). The DLP3 genome encodes 153 coding domain sequences covering 95% of the genome, including five tRNA genes with different specificities. The DLP3 lysogen exhibits a growth rate increase during the exponential phase of growth as compared to the wild type strain. DLP3 also encodes a functional erythromycin resistance protein, causing lysogenic conversion of the host D1571 strain. Although a temperate phage, DLP3 demonstrates excellent therapeutic potential because it exhibits a broad host range, infects host cells through the S. maltophilia type IV pilus, and exhibits lytic activity in vivo. Undesirable traits, such as its temperate lifecycle, can be eliminated using genetic techniques to produce a modified phage useful in the treatment of S. maltophilia bacterial infections.
Collapse
Affiliation(s)
- Danielle L Peters
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jaclyn G McCutcheon
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Yero D, Huedo P, Conchillo-Solé O, Martínez-Servat S, Mamat U, Coves X, Llanas F, Roca I, Vila J, Schaible UE, Daura X, Gibert I. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front Microbiol 2020; 11:1160. [PMID: 32582100 PMCID: PMC7283896 DOI: 10.3389/fmicb.2020.01160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the β-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.
Collapse
Affiliation(s)
- Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ferran Llanas
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
11
|
Ferreira MA, Pereira ML, Dos Santos KV. Drug-induced tolerance: the effects of antibiotic pre-exposure in Stenotrophomonas maltophilia. Future Microbiol 2020; 15:497-508. [PMID: 32478618 DOI: 10.2217/fmb-2019-0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aim: To investigate if the prior use of nontargeted antibiotics induces cross-tolerance in Stenotrophomonas maltophilia. Methods: Antibiotic induction was performed to evaluate daptomycin and vancomycin as possible tolerance-inducing drugs measured by minimum bactericidal concentration/minimum inhibitory concentration (MIC) ratio, adapted disk-diffusion tests and time-kill curves. Results: After antibiotic exposure, three potentially tolerant strains were isolated, maintaining the same MIC value of levofloxacin, with minimum bactericidal concentration/MIC ratio slightly higher than the parental. In the adapted disk-diffusion test, one strain (D25) showed high tolerance level for levofloxacin, ceftazidime and ticarcillin-clavulanate. In time-kill activity of levofloxacin, D25 presented a subpopulation of persisters with survival rate higher (1.6-fold) than the parental. Conclusion: Previous exposure of S. maltophilia to daptomycin can induce cross-tolerance to ceftazidime and ticarcillin-clavulanate and cross-persistence to levofloxacin.
Collapse
Affiliation(s)
- Mariana Am Ferreira
- Department of Pathology, Health Sciences Center, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Maria Ls Pereira
- Department of Pathology, Health Sciences Center, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| | - Kênia V Dos Santos
- Department of Pathology, Health Sciences Center, Universidade Federal do Espírito Santo (UFES), Av. Marechal Campos, 1468, 29040-090 Vitória, Espírito Santo, Brazil
| |
Collapse
|
12
|
Kanderi T, Shrimanker I, Mansoora Q, Shah K, Yumen A, Komanduri S. Stenotrophomonas maltophilia: An Emerging Pathogen of the Respiratory Tract. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e921466. [PMID: 32448864 PMCID: PMC7274500 DOI: 10.12659/ajcr.921466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patient: Female, 70-year-old Final Diagnosis:Stenotrophomonas maltophilia Symptoms: Difficult to breath, patient could not wean from oxygen/premature Medication: — Clinical Procedure: — Specialty: General and Internal Medicine
Collapse
Affiliation(s)
- Tejaswi Kanderi
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) Pinnacle, Harrisburg, PA, USA
| | - Isha Shrimanker
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) Pinnacle, Harrisburg, PA, USA
| | - Qurat Mansoora
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) Pinnacle, Harrisburg, PA, USA
| | - Kajol Shah
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anna Yumen
- Department of Internal Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Saketram Komanduri
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) Pinnacle, Harrisburg, PA, USA
| |
Collapse
|
13
|
Penagos SC, Giraldo N, Vallejo C, McEwen O, Hidron A. First report of survival in two patients with hematologic malignancy and Stenotrophomonas maltophilia hemorrhagic pneumonia treated with trimethoprim-sulfamethoxazole-based combination antibiotic therapy. J Infect Chemother 2019; 26:397-399. [PMID: 31882384 DOI: 10.1016/j.jiac.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
Stenotrophomonas maltophilia has become a common cause of opportunistic infections in immunocompromised hosts and critical care patients. The most common disease manifestations are pneumonia and bacteremia, with a mortality ranging from 9% to 60.5% depending of the type of infection and host related underlying risk factors. Patients with hematological malignancies may develop a hemorrhagic pneumonia with a rapidly progressive and universally fatal disease course, despite appropriate treatment with trimethoprim/sulfamethoxazole or combination therapy. We report the first two patients with hematologic malignancies and hemorrhagic pneumonia due to S. maltophilia with successful treatment outcomes after early institution of combination therapy with TMP/SMX, polymyxin, and/or moxifloxacin.
Collapse
Affiliation(s)
- Sara Catalina Penagos
- Infectious Diseases, Internal Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Nelson Giraldo
- Critical Care Medicine, Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Camilo Vallejo
- Internal Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oscar McEwen
- Critical Care Medicine, Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Alicia Hidron
- Infectious Diseases, Internal Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia; Infectious Diseases, Internal Medicine, Hospital Pablo Tobón Uribe, Medellín, Colombia
| |
Collapse
|
14
|
Liu B, Tong S. An investigation of Stenotrophomonas maltophilia-positive culture caused by fiberoptic bronchoscope contamination. BMC Infect Dis 2019; 19:1072. [PMID: 31864284 PMCID: PMC6925470 DOI: 10.1186/s12879-019-4670-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Background Stenotrophomonas maltophilia (SMA) is present in hospital environments and has been one of the pathogens that cause nosocomial contamination and infections. To investigate the occurrence of Stenotrophomonas maltophilia (SMA) in bronchoscope lavage fluid (BALF) among 25 cases treated in the Division of Infection and to trace the contamination source and transmission route. Methods 25 cases of SMA positive BALF occurring from May 11 to August 10, 2018 were tested for drug sensitivity. Environmental hygiene conditions were investigated to identify the source of contamination and the route of transmission. Results BALF associated SMA was in all cases sensitive to minocycline, levofloxacin and chloramphenicol and resistant to ceftazidime and imipenem. 92.3% of samples were sensitivity to compound sulfamethoxazole. Investigation of environmental hygiene parameters revealed SMA growing on the inner wall of the fiberoptic bronchoscope as a likely source of contamination. Conclusion Incomplete cleaning and sterilization of the fiberoptic bronchoscope led to SMA nosocomial contamination. Strict sterilization procedures are required to prevent and control nosocomial contamination.
Collapse
Affiliation(s)
- Bende Liu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shenglan Tong
- Department of Clinical Laboratory, First People's Hospital of Jiangxia District in Wuhan, Wuhan, 430200, China.
| |
Collapse
|
15
|
Treatment Outcomes of Stenotrophomonas maltophilia Bacteremia in Critically Ill Children: A Multicenter Experience. Pediatr Crit Care Med 2019; 20:e231-e239. [PMID: 31058792 DOI: 10.1097/pcc.0000000000001919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Stenotrophomonas maltophilia is a gram-negative opportunistic bacterium that may cause a myriad of clinical diseases in immunocompromised individuals. We aimed to describe the clinical characteristics, risk factors, mortality, and treatment of S. maltophilia bacteremia in critically ill children, a topic on which data are sparse. DESIGN A multicenter observational retrospective study in which medical charts of critically ill children with S. maltophilia bacteremia were reviewed between 2012 and 2017. SETTING Data were collected from each of the four largest PICUs nationwide, allocated in tertiary medical centers to which children with complex conditions are referred regularly. PATIENTS A total of 68 suitable cases of S. maltophilia bacteremia were retrieved and reviewed. MEASUREMENTS AND MAIN RESULTS The total occurrence rate of S. maltophilia isolation had increased significantly during the study period (r = 0.65; p = 0.02). The crude mortality was 42%, and the attributed mortality was 18%. Significant risk factors for mortality were a longer length of hospital stay prior to infection (33 d in nonsurvivors vs 28 in survivors; p = 0.03), a nosocomial source of infection (p = 0.02), presentation with septic shock (p < 0.001), and treatment with chemotherapy (p = 0.007) or carbapenem antibiotics (p = 0.05) prior to culture retrieval. On multivariate analysis, septic shock (odds ratio, 14.6; 95% CI, 1.45-147.05; p = 0.023) and being treated with chemotherapy prior to infection (odds ratio, 5.2; 95% CI, 1.59-17.19; p = 0.006)] were associated with mortality. The combination of ciprofloxacin, trimethoprim-sulfamethoxazole, and minocycline resulted in the longest survival time (p < 0.01). CONCLUSIONS The significant attributed mortality associated with S. maltophilia bacteremia in critically ill children calls for an aggressive therapeutic approach. The findings of this investigation favor a combination of trimethoprim-sulfamethoxazole, ciprofloxacin, and minocycline.
Collapse
|
16
|
Bergen PJ, Smith NM, Bedard TB, Bulman ZP, Cha R, Tsuji BT. Rational Combinations of Polymyxins with Other Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:251-288. [PMID: 31364082 DOI: 10.1007/978-3-030-16373-0_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Combinations of antimicrobial agents are often used in the management of infectious diseases. Antimicrobial agents used as part of combination therapy are often selected empirically. As regrowth and the emergence of polymyxin (either colistin or polymyxin B) resistance has been observed with polymyxin monotherapy, polymyxin combination therapy has been suggested as a possible means by which to increase antimicrobial activity and reduce the development of resistance. This chapter provides an overview of preclinical and clinical investigations of CMS/colistin and polymyxin B combination therapy. In vitro data and animal model data suggests a potential clinical benefit with many drug combinations containing clinically achievable concentrations of polymyxins, even when resistance to one or more of the drugs in combination is present and including antibiotics normally inactive against Gram-negative organisms. The growing body of data on the emergence of polymyxin resistance with monotherapy lends theoretical support to a benefit with combination therapy. Benefits include enhanced bacterial killing and a suppression of polymyxin resistant subpopulations. However, the complexity of the critically ill patient population, and high rates of treatment failure and death irrespective of infection-related outcome make demonstrating a potential benefit for polymyxin combinations extremely challenging. Polymyxin combination therapy in the clinic remains a heavily debated and controversial topic. When combinations are selected, optimizing the dosage regimens for the polymyxin and the combinatorial agent is critical to ensure that the benefits outweigh the risk of the development of toxicity. Importantly, patient characteristics, pharmacokinetics, the site of infection, pathogen and resistance mechanism must be taken into account to define optimal and rational polymyxin combination regimens in the clinic.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville Campus, Melbourne, VIC, Australia.
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Tyler B Bedard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Zackery P Bulman
- University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
17
|
Khalil MAF, Moawad SS, Hefzy EM. In vivo activity of co-trimoxazole combined with colistin against Acinetobacter baumannii producing OXA-23 in a Galleria mellonella model. J Med Microbiol 2019; 68:52-59. [DOI: 10.1099/jmm.0.000872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mahmoud A. F. Khalil
- 1Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Sawsan S. Moawad
- 2Department of Pests and Plant Protection, National Research Center (NRC), Giza, 12311, Egypt
| | - Enas M. Hefzy
- 3Department of Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, 6351, Egypt
| |
Collapse
|
18
|
Martínez-Servat S, Yero D, Huedo P, Marquez R, Molina G, Daura X, Gibert I. Heterogeneous Colistin-Resistance Phenotypes Coexisting in Stenotrophomonas maltophilia Isolates Influence Colistin Susceptibility Testing. Front Microbiol 2018; 9:2871. [PMID: 30524420 PMCID: PMC6262003 DOI: 10.3389/fmicb.2018.02871] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
The polymyxin antibiotic colistin shows in vitro activity against Stenotrophomonas maltophilia. However, an increased incidence of colistin-resistant isolates has been recently observed. In addition, in vitro evaluation of colistin susceptibility for this organism has been problematic. The aims of this study were to investigate the colistin-resistance phenotypes displayed by S. maltophilia and their potential association with the challenging determination of colistin susceptibilities for this organism by even the recommended method. Colistin-resistance phenotypes were inferred by use of the recommended broth microdilution method in different clinical isolates of S. maltophilia. Most of the strains showed non-interpretable minimum inhibitory concentrations (MICs) for colistin due to an incomplete growth inhibition in wells of the microdilution plate. In addition, the subpopulation of bacteria resistant to colistin showed an increased ability to form biofilms on the plastic surface of MIC plates. The observed incomplete growth inhibition in the microdilution plates is compatible with a progressive adaptation to colistin or a heterogeneous susceptibility to this antibiotic. Therefore, to determine the existence of heteroresistance or adaptive resistance, four colistin-resistant clinical isolates were subjected to serial Etest assays, growth rate analyses, and the population analysis profile test. The experiments indicated that these S. maltophilia isolates display a colistin-resistant sub-population that survives and multiplies in the presence of the antibiotic. Interestingly, this phenomenon might not be explainable by the natural background mutation rate alone since the development of a resistant sub-population occurred upon the contact with the antibiotic and it was reversible. This complex colistin-resistance phenotype is exhibited differently by the different isolates and significantly affected colistin susceptibility testing. Furthermore, it can coexist with adaptive resistance to colistin as response to pre-incubation with sub-inhibitory concentrations of the antibiotic. Overall, the combined action of heterogeneous colistin-resistance mechanisms in S. maltophilia isolates, including colistin-induced biofilm formation, may hamper the correct interpretation of colistin susceptibility tests, thus having potentially serious implications on antimicrobial-therapy decision making.
Collapse
Affiliation(s)
- Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roser Marquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gara Molina
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
BACKGROUND Stenotrophomonas maltophilia is a life-threatening nosocomial pathogen with profound multidrug-resistant attributes. It is associated with high mortality, particularly in immunocompromised patients. Data on therapy for S. maltophilia infections are scarce, especially in children hospitalized in intensive care settings (pediatric intensive care unit). METHODS A retrospective chart review of pediatric patients with isolates of S. maltophilia hospitalized over a 5-year period in 2 pediatric intensive care units. RESULTS Thirty-one patients and 91 isolates from blood, respiratory secretions and soft tissues were identified and reviewed. The overall incidence of S. maltophilia infections increased during the study period (P = 0.003). The all-cause crude mortality was 61%, and the attributed mortality was approximately 16%. Risk factors associated with mortality included longer hospitalization before infection (P = 0.002), septic shock (P = 0.003), mechanical ventilation (P = 0.004), an indwelling central vein catheter (P = 0.03) and prior use of steroids (P = 0.04) and carbapenems (P = 0.004). On multivariate analysis, mortality was associated with mechanical ventilation (P = 0.02) and preinfection hospitalization days (P = 0.01). Combination treatment of trimethoprim and sulfamethoxazole, ciprofloxacin and/or minocycline significantly extended survival time (P < 0.001). The method of treatment did not significantly affect the interval between S. maltophilia isolation to resolution of infection (P = 0.200). CONCLUSIONS Combinations of trimethoprim and sulfamethoxazole, ciprofloxacin and minocycline are proposed for pediatric intensive care unit patients harboring S. maltophilia. Meticulous evaluation of central vascular access and prior treatment with carbapenems are indicated, especially for mechanically ventilated and septic children.
Collapse
|
20
|
Esposito A, Pompilio A, Bettua C, Crocetta V, Giacobazzi E, Fiscarelli E, Jousson O, Di Bonaventura G. Evolution of Stenotrophomonas maltophilia in Cystic Fibrosis Lung over Chronic Infection: A Genomic and Phenotypic Population Study. Front Microbiol 2017; 8:1590. [PMID: 28894437 PMCID: PMC5581383 DOI: 10.3389/fmicb.2017.01590] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Stenotrophomonas maltophilia has been recognized as an emerging multi-drug resistant opportunistic pathogen in cystic fibrosis (CF) patients. We report a comparative genomic and phenotypic analysis of 91 S. maltophilia strains from 10 CF patients over a 12-year period. Draft genome analyses included in silico Multi-Locus Sequence Typing (MLST), Single-Nucleotide Polymorphisms (SNPs), and pangenome characterization. Growth rate, biofilm formation, motility, mutation frequency, in vivo virulence, and in vitro antibiotic susceptibility were determined and compared with population structure over time. The population consisted of 20 different sequence types (STs), 11 of which are new ones. Pangenome and SNPs data showed that this population is composed of three major phylogenetic lineages. All patients were colonized by multiple STs, although most of them were found in a single patient and showed persistence over years. Only few phenotypes showed some correlation with population phylogenetic structure. Our results show that S. maltophilia adaptation to CF lung is associated with consistent genotypic and phenotypic heterogeneity. Stenotrophomonas maltophilia infecting multiple hosts likely experiences different selection pressures depending on the host environment. The poor genotype-phenotype correlation suggests the existence of complex regulatory mechanisms that need to be explored in order to better design therapeutic strategies.
Collapse
Affiliation(s)
- Alfonso Esposito
- Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio" Chieti-PescaraChieti, Italy
| | - Clotilde Bettua
- Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Valentina Crocetta
- Department of Medical, Oral, and Biotechnological Sciences, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio" Chieti-PescaraChieti, Italy
| | | | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, "Bambino Gesù" HospitalRome, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio" Chieti-PescaraChieti, Italy
| |
Collapse
|
21
|
Manohar P, Shanthini T, Ayyanar R, Bozdogan B, Wilson A, Tamhankar AJ, Nachimuthu R, Lopes BS. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. J Med Microbiol 2017; 66:874-883. [PMID: 28671537 DOI: 10.1099/jmm.0.000508] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. METHODOLOGY The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. RESULTS A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. CONCLUSION Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.
Collapse
Affiliation(s)
- Prasanth Manohar
- Department of Biomedical Sciences, School of Biosciences and Technology, Antibiotic Resistance Laboratory, VIT University, Vellore 632014, Tamil Nadu, India
| | - Thamaraiselvan Shanthini
- School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, University of Aberdeen, Aberdeen, UK
| | - Ramankannan Ayyanar
- Department of Biomedical Sciences, School of Biosciences and Technology, Antibiotic Resistance Laboratory, VIT University, Vellore 632014, Tamil Nadu, India
| | - Bulent Bozdogan
- Medical Microbiology Department, Adnan Menderes University, Aydin 09100, Turkey
| | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92350, USA
| | - Ashok J Tamhankar
- Department of Public Health Sciences, Global Health, Health Systems and Policy: Medicines in the health system - focusing antibiotics, Karolinska Institutet, Stockholm, Sweden
- Department of Environmental Medicine, Indian Initiative for Management of Antibiotic Resistance, Ruxmaniben Deepchand Gardi Medical College, Ujjain, India
| | - Ramesh Nachimuthu
- Department of Biomedical Sciences, School of Biosciences and Technology, Antibiotic Resistance Laboratory, VIT University, Vellore 632014, Tamil Nadu, India
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
22
|
Araoka H, Baba M, Okada C, Abe M, Kimura M, Yoneyama A. Evaluation of trimethoprim-sulfamethoxazole based combination therapy against Stenotrophomonas maltophilia: in vitro effects and clinical efficacy in cancer patients. Int J Infect Dis 2017; 58:18-21. [PMID: 28257816 DOI: 10.1016/j.ijid.2017.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the in vitro effects and clinical efficacies of trimethoprim-sulfamethoxazole (SXT) combined with other antimicrobial agents against Stenotrophomonas maltophilia. METHODS In vitro analysis was conducted on 89 S. maltophilia strains isolated from blood and the respiratory tract between June 2012 and October 2014. Levofloxacin (LVX), ticarcillin-clavulanic acid (TIM), and minocycline (MIN) were selected for an examination of their effects when individually combined with SXT by the checkerboard method. In addition, 29 S. maltophilia bacteremia cases were reviewed and the clinical efficacies of SXT-based combination therapies were analyzed. RESULTS SXT+LVX showed synergy in 21, no interactions in 61, and antagonism in 7. SXT+TIM showed synergy in 71, and no interactions in 18. SXT+MIN showed synergy in 10, and no interactions in 79. The review of clinical data indicated that a combination of SXT+fluoroquinolone was not associated with improved prognosis compared with monotherapy. CONCLUSIONS The in vitro data indicated that SXT+TIM had beneficial microbiological effects and was not antagonistic. Our in vitro and clinical data analyses do not support the routine use of SXT+fluoroquinolone combination therapy for S. maltophilia infection.
Collapse
Affiliation(s)
- Hideki Araoka
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan; Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| | - Masaru Baba
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Chikako Okada
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Masahiro Abe
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Muneyoshi Kimura
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Akiko Yoneyama
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan; Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
23
|
Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G, Vitali LA, Fiscarelli E, Di Bonaventura G. Stenotrophomonas maltophilia Phenotypic and Genotypic Diversity during a 10-year Colonization in the Lungs of a Cystic Fibrosis Patient. Front Microbiol 2016; 7:1551. [PMID: 27746770 PMCID: PMC5044509 DOI: 10.3389/fmicb.2016.01551] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022] Open
Abstract
The present study was carried out to understand the adaptive strategies developed by Stenotrophomonas maltophilia for chronic colonization of the cystic fibrosis (CF) lung. For this purpose, 13 temporally isolated strains from a single CF patient chronically infected over a 10-year period were systematically characterized for growth rate, biofilm formation, motility, mutation frequencies, antibiotic resistance, and pathogenicity. Pulsed-field gel electrophoresis (PFGE) showed over time the presence of two distinct groups, each consisting of two different pulsotypes. The pattern of evolution followed by S. maltophilia was dependent on pulsotype considered, with strains belonging to pulsotype 1.1 resulting to be the most adapted, being significantly changed in all traits considered. Generally, S. maltophilia adaptation to CF lung leads to increased growth rate and antibiotic resistance, whereas both in vivo and in vitro pathogenicity as well as biofilm formation were decreased. Overall, our results show for the first time that S. maltophilia can successfully adapt to a highly stressful environment such as CF lung by paying a “biological cost,” as suggested by the presence of relevant genotypic and phenotypic heterogeneity within bacterial population. S. maltophilia populations are, therefore, significantly complex and dynamic being able to fluctuate rapidly under changing selective pressures.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Dipankar Ghosh
- Special Center for Molecular Medicine, Jawaharlal Nehru University New Delhi, India
| | - Malabika Chakrabarti
- Special Center for Molecular Medicine, Jawaharlal Nehru University New Delhi, India
| | | | | | | | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| |
Collapse
|
24
|
Betts JW, Phee LM, Wareham DW. Rifaximin combined with polymyxins: A potential regimen for selective decontamination of multidrug-resistant bacteria in the digestive tract? J Glob Antimicrob Resist 2016; 4:11-15. [PMID: 27436386 DOI: 10.1016/j.jgar.2015.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022] Open
Abstract
Selective decontamination of the digestive tract (SDD) using combinations of oral non-absorbable antibiotics has been proposed as a means of preventing multidrug-resistant (MDR) infections. The minimum inhibitory concentrations (MICs) of rifaximin (RIFAX) were determined against 262 Gram-negative and Gram-positive bacterial isolates by broth microtitre assay. Rifampicin (RIF) was used as a comparator in the analysis. Synergistic interactions between RIFAX and polymyxin B (PMB) were assessed by using the chequerboard method and calculating the fractional inhibitory concentration index (FICI). The antimicrobial activities of both RIFAX and RIF were similar with little variation in the overall MIC distributions for Gram-negative non-fermenters and Gram-positive bacteria. However, against Enterobacteriaceae higher MICs (>16mg/L) were observed for RIFAX than for RIF (50% vs 27%). Amongst the 262 isolates tested, 100 could be considered resistant to RIFAX. Overall, the combination of RIFAX and PMB was more active against all of the isolates tested compared with either drug alone, with reductions of 2-11 doubling dilutions in individual MICs. Potent synergy was observed with the RIFAX+PMB combination using FICI criteria (FICI range 0.02-0.5). The data presented here suggest that combination therapy may be significantly more effective against isolates with RIFAX and/or PMB resistance and could be considered as part of a SDD regimen aimed at reducing enteric carriage of MDR pathogens in colonised and infected patients.
Collapse
Affiliation(s)
- J W Betts
- Queen Mary University London, Antimicrobial Research Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, London, UK.
| | - L M Phee
- Queen Mary University London, Antimicrobial Research Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, London, UK; Division of Infection, Barts Health NHS Trust, London, UK
| | - D W Wareham
- Queen Mary University London, Antimicrobial Research Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, London, UK; Division of Infection, Barts Health NHS Trust, London, UK
| |
Collapse
|
25
|
Wei WJ, Yang HF, Ye Y, Li JB. Galleria mellonella as a model system to assess the efficacy of antimicrobial agents against Klebsiella pneumoniae infection. J Chemother 2016; 29:252-256. [PMID: 27237961 DOI: 10.1080/1120009x.2016.1156892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Wen-Juan Wei
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Hai-Fei Yang
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Ying Ye
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Bacterium Resistance , Anhui Medical University , Hefei , China.,c Department of bacteria resistance , Anhui Center for Surveillance of Bacterial Resistance , Hefei , China
| | - Jia-Bin Li
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Bacterium Resistance , Anhui Medical University , Hefei , China.,c Department of bacteria resistance , Anhui Center for Surveillance of Bacterial Resistance , Hefei , China.,d Department of Infectious Disease , Chaohu Hospital of Anhui Medical University , Hefei , China
| |
Collapse
|
26
|
|
27
|
Yang H, Chen G, Hu L, Liu Y, Cheng J, Ye Y, Li J. Enhanced efficacy of imipenem-colistin combination therapy against multiple-drug-resistant Enterobacter cloacae: in vitro activity and a Galleria mellonella model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 51:70-75. [PMID: 26906264 DOI: 10.1016/j.jmii.2016.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE To investigate the in vitro and in vivo activity of imipenem-colistin combination against multidrug-resistant Enterobacter cloacae infections in order to determine whether it should be explored further. METHODS The antimicrobial activity of colistin alone and in combination with imipenem was assessed versus an imipenem-susceptible isolate, E. cloacae GN1059, or an imipenem-resistant strain, E. cloacae GN0791, isolated in Anhui, China. The potential synergy of imipenem-colistin was evaluated using a checkerboard assay, as well as static time-kill experiments at 1× and 2× minimum inhibitory concentration (MIC). A simple invertebrate model (Galleria mellonella) was developed to assess the in vivo efficacy of imipenem-colistin in treating E. cloacae infection. RESULTS In checkerboard assays, synergy (defined as a fractional inhibitory concentration index of ≤ 0.5) was observed between imipenem and colistin for both isolates tested. In time-kill assays, the combination of imipenem-colistin at 1× or 2× MIC resulted in complete killing of both strains. In the G. mellonella larvae model infected with lethal doses of E. cloacae, the combination therapy led to significantly increased survival of the larvae as compared with imipenem or colistin monotherapy alone (p < 0.05). CONCLUSION This is the first report demonstrating the efficacy of antimicrobial agents in the G. mellonella larvae model of infections caused by E. cloacae. Our study suggested that imipenem-colistin combination was highly active against E. cloacae both in vitro and in the simple invertebrate model, and provided preliminary in vivo evidence that such combination might be useful therapeutically.
Collapse
Affiliation(s)
- Haifei Yang
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guosheng Chen
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lifen Hu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Molecular Biology, Institute of Bacterium Resistance, Anhui Medical University, Hefei, China; Department of Molecular Biology, Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| | - Jun Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Ye
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Molecular Biology, Institute of Bacterium Resistance, Anhui Medical University, Hefei, China; Department of Molecular Biology, Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Molecular Biology, Institute of Bacterium Resistance, Anhui Medical University, Hefei, China; Department of Molecular Biology, Anhui Center for Surveillance of Bacterial Resistance, Hefei, China; Department of Infectious Diseases, Chaohu Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Ciesielczuk H, Betts J, Phee L, Doumith M, Hope R, Woodford N, Wareham DW. Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence 2016; 6:145-51. [PMID: 25853733 DOI: 10.4161/21505594.2014.988095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are a significant cause of urinary tract infections and bacteraemia worldwide. Currently no single virulence factor or ExPEC lineage has been identified as the sole contributor to severe extra-intestinal infection and/or urosepsis. Galleria mellonella has recently been established as a simple model for studying the comparative virulence of ExPEC. In this study we investigated the virulence of 40 well-characterized ExPEC strains, in G. mellonella, by measuring mortality (larvae survival), immune recognition/response (melanin production) and cell damage (lactate dehydrogenase production). Although mortality was similar between urinary and bloodstream isolates, it was heightened for community-associated infections, complicated UTIs and urinary-source bacteraemia. Isolates of ST131 and those possessing afa/dra, ompT and serogroup O6 were also associated with heightened virulence.
Collapse
Affiliation(s)
- Holly Ciesielczuk
- a Antimicrobial Research Group; Center for Immunology and Infectious Disease; Blizard Institute, Barts and the London School of Medicine and Dentistry; Queen Mary; University of London ; London , UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Bergen PJ, Bulman ZP, Landersdorfer CB, Smith N, Lenhard JR, Bulitta JB, Nation RL, Li J, Tsuji BT. Optimizing Polymyxin Combinations Against Resistant Gram-Negative Bacteria. Infect Dis Ther 2015; 4:391-415. [PMID: 26645096 PMCID: PMC4675771 DOI: 10.1007/s40121-015-0093-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
Polymyxin combination therapy is increasingly used clinically. However, systematic investigations of such combinations are a relatively recent phenomenon. The emerging pharmacodynamic (PD) and pharmacokinetic (PK) data on CMS/colistin and polymyxin B suggest that caution is required with monotherapy. Given this situation, polymyxin combination therapy has been suggested as a possible way to increase bacterial killing and reduce the development of resistance. Considerable in vitro data have been generated in support of this view, particularly recent studies utilizing dynamic models. However, most existing animal data are of poor quality with major shortcomings in study design, while clinical data are generally limited to retrospective analysis and small, low-power, prospective studies. This article provides an overview of clinical and preclinical investigations of CMS/colistin and polymyxin B combination therapy.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Melbourne, Australia
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,Centre for Medicine Use and Safety, Monash University, Melbourne, Australia
| | - Nicholas Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Justin R Lenhard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
30
|
Chang YT, Lin CY, Chen YH, Hsueh PR. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 2015; 6:893. [PMID: 26388847 PMCID: PMC4557615 DOI: 10.3389/fmicb.2015.00893] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/17/2015] [Indexed: 01/14/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative, biofilm-forming bacterium. Although generally regarded as an organism of low virulence, S. maltophilia is an emerging multi-drug resistant opportunistic pathogen in hospital and community settings, especially among immunocompromised hosts. Risk factors associated with S. maltophilia infection include underlying malignancy, cystic fibrosis, corticosteroid or immunosuppressant therapy, the presence of an indwelling central venous catheter and exposure to broad spectrum antibiotics. In this review, we provide a synthesis of information on current global trends in S. maltophilia pathogenicity as well as updated information on the molecular mechanisms contributing to its resistance to an array of antimicrobial agents. The prevalence of S. maltophilia infection in the general population increased from 0.8-1.4% during 1997-2003 to 1.3-1.68% during 2007-2012. The most important molecular mechanisms contributing to its resistance to antibiotics include β-lactamase production, the expression of Qnr genes, and the presence of class 1 integrons and efflux pumps. Trimethoprim/sulfamethoxazole (TMP/SMX) is the antimicrobial drug of choice. Although a few studies have reported increased resistance to TMP/SMX, the majority of studies worldwide show that S. maltophilia continues to be highly susceptible. Drugs with historically good susceptibility results include ceftazidime, ticarcillin-clavulanate, and fluoroquinolones; however, a number of studies show an alarming trend in resistance to those agents. Tetracyclines such as tigecycline, minocycline, and doxycycline are also effective agents and consistently display good activity against S. maltophilia in various geographic regions and across different time periods. Combination therapies, novel agents, and aerosolized forms of antimicrobial drugs are currently being tested for their ability to treat infections caused by this multi-drug resistant organism.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Municipal HsiaoKang Hospital Kaohsiung, Taiwan ; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung, Taiwan ; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung, Taiwan ; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan ; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University HsinChu, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine Taipei, Taiwan
| |
Collapse
|
31
|
Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015; 5:61. [PMID: 26261001 PMCID: PMC4531117 DOI: 10.1186/s13613-015-0061-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
The burden of multidrug resistance in Gram-negative bacilli (GNB) now represents a daily issue for the management of antimicrobial therapy in intensive care unit (ICU) patients. In Enterobacteriaceae, the dramatic increase in the rates of resistance to third-generation cephalosporins mainly results from the spread of plasmid-borne extended-spectrum beta-lactamase (ESBL), especially those belonging to the CTX-M family. The efficacy of beta-lactam/beta-lactamase inhibitor associations for severe infections due to ESBL-producing Enterobacteriaceae has not been adequately evaluated in critically ill patients, and carbapenems still stands as the first-line choice in this situation. However, carbapenemase-producing strains have emerged worldwide over the past decade. VIM- and NDM-type metallo-beta-lactamases, OXA-48 and KPC appear as the most successful enzymes and may threaten the efficacy of carbapenems in the near future. ESBL- and carbapenemase-encoding plasmids frequently bear resistance determinants for other antimicrobial classes, including aminoglycosides (aminoglycoside-modifying enzymes or 16S rRNA methylases) and fluoroquinolones (Qnr, AAC(6′)-Ib-cr or efflux pumps), a key feature that fosters the spread of multidrug resistance in Enterobacteriaceae. In non-fermenting GNB such as Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia, multidrug resistance may emerge following the sole occurrence of sequential chromosomal mutations, which may lead to the overproduction of intrinsic beta-lactamases, hyper-expression of efflux pumps, target modifications and permeability alterations. P. aeruginosa and A. baumannii also have the ability to acquire mobile genetic elements encoding resistance determinants, including carbapenemases. Available options for the treatment of ICU-acquired infections due to carbapenem-resistant GNB are currently scarce, and recent reports emphasizing the spread of colistin resistance in environments with high volume of polymyxins use elicit major concern.
Collapse
Affiliation(s)
- Étienne Ruppé
- Department of Infectious Diseases, Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland,
| | | | | |
Collapse
|
32
|
Juhász E, Krizsán G, Lengyel G, Grósz G, Pongrácz J, Kristóf K. Infection and colonization by Stenotrophomonas maltophilia: antimicrobial susceptibility and clinical background of strains isolated at a tertiary care centre in Hungary. Ann Clin Microbiol Antimicrob 2014; 13:333. [PMID: 25551459 PMCID: PMC4307884 DOI: 10.1186/s12941-014-0058-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is an important opportunistic, mainly nosocomial pathogen that emerged in the last decades worldwide. Due to its inherent extended antibiotic resistance, therapeutic options are strongly limited. New resistance mechanisms in S. maltophilia make antibiotic therapy even more difficult. The aim of our study was to investigate the antimicrobial resistance of S. maltophilia isolates collected in our laboratory and to reveal related clinical background. METHOD Consecutive non-duplicate S. maltophilia isolates (n = 160) were collected in a three-year period. Conventional methods, automated identification system and MALDI-TOF MS was used for identification, ERIC-PCR for genetic relationship analysis and broth microdilution method to determine the susceptibility for trimethoprim/sulfamethoxazole (SXT), ciprofloxacin, levofloxacin, moxifloxacin, colistin, doxycycline and tigecycline. Clinical final reports were used retrospectively to collect clinical information. RESULTS ERIC-PCR revealed large heterogeneity. Trimethoprim/sulfamethoxazole, moxifloxacin and levofloxacin were found to be the most effective agents with MIC50/MIC90 0.5/1, 0.25/1, 1/2 mg/l, respectively. Seventy percent of patients with S. maltophilia infection were treated in intensive care units. All-cause mortality rate was 45%. Nearly 70% of the isolates were collected from polymicrobial infections/colonizations. CONCLUSIONS Trimethoprim/sulfamethoxazole is the most potent antibiotic agent against S. maltophilia. In case of SXT hypersensitivity, intolerance or resistance, fluoroquinolones are alternative therapeutic options. Missing clinical breakpoints, consensus antibiotic susceptibility testing guidelines and clinical trials make the interpretation of antibiotic susceptibility testing results difficult. The indirect pathogenicity of S. maltophilia in polymicrobial infections or colonizations has to be taken into consideration.
Collapse
Affiliation(s)
- Emese Juhász
- Diagnostic Laboratory of Clinical Microbiology, Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Gergely Krizsán
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.
| | - György Lengyel
- Hungarian Defence Forces, Military Medical Centre, Budapest, Hungary.
| | - Gábor Grósz
- Hungarian Defence Forces, Military Medical Centre, Budapest, Hungary.
| | - Júlia Pongrácz
- Diagnostic Laboratory of Clinical Microbiology, Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Katalin Kristóf
- Diagnostic Laboratory of Clinical Microbiology, Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
33
|
Personne Y, Curtis MA, Wareham DW, Waite RD. Activity of the type I signal peptidase inhibitor MD3 against multidrug-resistant Gram-negative bacteria alone and in combination with colistin. J Antimicrob Chemother 2014; 69:3236-43. [PMID: 25134721 DOI: 10.1093/jac/dku309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Effective treatment of Gram-negative bacterial infections is increasingly challenging due to the spread of multidrug-resistant strains and a lack of new antimicrobials in development. Bacterial type I signal peptidases (SPases) represent a highly conserved and essential target for inhibition by novel compounds. SPases are required for the effective processing of membrane translocated proteins involved in core functions related to metabolism, virulence and resistance. In this study we assessed the biochemical and functional activity of a novel synthetic inhibitor (MD3) of SPases against a wide range of Gram-negative pathogens. METHODS The activity and specificity of MD3 for recombinant Pseudomonas aeruginosa SPase (LepB) and a genetically engineered LepB-regulatable strain were investigated. Antimicrobial activity of the compound alone and in combination with outer membrane-permeabilizing agents (sodium hexametaphosphate, colistin) was also determined against a collection of P. aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia isolates. RESULTS MD3 was found to inactivate the P. aeruginosa LepB protein (IC50 10 μM), resulting in antimicrobial effects potentiated in the presence of colistin. MD3 also demonstrated potent activity against wild-type and multidrug-resistant strains of A. baumannii and S. maltophilia with MICs ranging from 0.5 to 14 mg/L in the presence of subinhibitory concentrations of colistin. CONCLUSIONS MD3 is a novel inhibitor of bacterial SPase in a range of non-fermentative Gram-negative bacteria. The antimicrobial activity is potentiated in combination with colistin and suggests that SPase inhibition warrants further exploration as a basis for future mono or combination therapies.
Collapse
Affiliation(s)
- Yoann Personne
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Michael A Curtis
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, UK
| | - David W Wareham
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Richard D Waite
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|