1
|
Li Y, Quan C, Xing W, Wang P, Gao J, Zhang Z, Jiang X, Ma C, Carr MJ, He Q, Gao L, Bi Y, Tang H, Shi W. Rapid humoral immune responses are required for recovery from haemorrhagic fever with renal syndrome patients. Emerg Microbes Infect 2021; 9:2303-2314. [PMID: 32990499 PMCID: PMC8284976 DOI: 10.1080/22221751.2020.1830717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Haemorrhagic fever with renal syndrome (HFRS) following Hantaan virus (HTNV) infection displays variable clinical signs. Humoral responses elicited during HTNV infections are considered important, however, this process remains poorly understood. Herein, we have investigated the phenotype, temporal dynamics, and characteristics of B-cell receptor (BCR) repertoire in an HFRS cohort. The serological profiles were characterized by a lowered expression level of nucleoprotein (NP)-specific antibody in severe cases. Importantly, B-cell subsets were activated and proliferated within the first two weeks of symptom onset and moderate cases reacted more rapidly. BCR analysis in the recovery phase revealed a dramatic increase in the immunoglobulin gene diversity which was more significantly progressed in moderate infections. In severe cases, B-cell-related transcription was lower with inflammatory sets overactivated. Taken together, these data suggest the clinical signs and disease recovery in HFRS patients were positively impacted by rapid and efficacious humoral responses.
Collapse
Affiliation(s)
- Yaoni Li
- Baoji Center Hospital, Baoji, People's Republic of China
| | - Chuansong Quan
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Peihan Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Jiming Gao
- Institute of Immunology, Shandong First Medical University& Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Xiaolin Jiang
- Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Chuanmin Ma
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Japan
| | - Qian He
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Lei Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hua Tang
- Institute of Immunology, Shandong First Medical University& Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| |
Collapse
|
2
|
Ge L, Zhao Y, Sheng Z, Wang N, Zhou K, Mu X, Guo L, Wang T, Yang Z, Huo X. Construction of a Seasonal Difference-Geographically and Temporally Weighted Regression (SD-GTWR) Model and Comparative Analysis with GWR-Based Models for Hemorrhagic Fever with Renal Syndrome (HFRS) in Hubei Province (China). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1062. [PMID: 27801870 PMCID: PMC5129272 DOI: 10.3390/ijerph13111062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is considered a globally distributed infectious disease which results in many deaths annually in Hubei Province, China. In order to conduct a better analysis and accurately predict HFRS incidence in Hubei Province, a new model named Seasonal Difference-Geographically and Temporally Weighted Regression (SD-GTWR) was constructed. The SD-GTWR model, which integrates the analysis and relationship of seasonal difference, spatial and temporal characteristics of HFRS (HFRS was characterized by spatiotemporal heterogeneity and it is seasonally distributed), was designed to illustrate the latent relationships between the spatio-temporal pattern of the HFRS epidemic and its influencing factors. Experiments from the study demonstrated that SD-GTWR model is superior to traditional models such as GWR- based models in terms of the efficiency and the ability of providing influencing factor analysis.
Collapse
Affiliation(s)
- Liang Ge
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China.
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Youlin Zhao
- Business School of Hohai University, Nanjing 211100, China.
| | - Zhongjie Sheng
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Ning Wang
- First Crust Deformation Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China.
| | - Kui Zhou
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Xiangming Mu
- School of Information Studies of University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Liqiang Guo
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Teng Wang
- Business School of Hohai University, Nanjing 211100, China.
| | - Zhanqiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430079, China.
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| |
Collapse
|