1
|
Liborio MP, Harris PNA, Ravi C, Irwin AD. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024; 12:1824. [PMID: 39338498 PMCID: PMC11434042 DOI: 10.3390/microorganisms12091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Time to receive effective therapy is a primary determinant of mortality in patients with sepsis. Blood culture is the reference standard for the microbiological diagnosis of bloodstream infections, despite its low sensitivity and prolonged time to receive a pathogen detection. In recent years, rapid tests for pathogen identification, antimicrobial susceptibility, and sepsis identification have emerged, both culture-based and culture-independent methods. This rapid narrative review presents currently commercially available approved diagnostic molecular technologies in bloodstream infections, including their clinical performance and impact on patient outcome, when available. Peer-reviewed publications relevant to the topic were searched through PubMed, and manufacturer websites of commercially available assays identified were also consulted as further sources of information. We have reviewed data about the following technologies for pathogen identification: fluorescence in situ hybridization with peptide nucleic acid probes (Accelerate PhenoTM), microarray-based assay (Verigene®), multiplex polymerase chain reaction (cobas® eplex, BioFire® FilmArray®, Molecular Mouse, Unyvero BCU SystemTM), matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (Rapid MBT Sepsityper®), T2 magnetic resonance (T2Bacteria Panel), and metagenomics-based assays (Karius©, DISQVER®, Day Zero Diagnostics). Technologies for antimicrobial susceptibility testing included the following: Alfed 60 ASTTM, VITEK® REVEALTM, dRASTTM, ASTar®, Fastinov®, QuickMIC®, ResistellTM, and LifeScale. Characteristics, microbiological performance, and issues of each method are described, as well as their clinical performance, when available.
Collapse
Affiliation(s)
- Mariana P. Liborio
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Patrick N. A. Harris
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD 4029, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
| | - Chitra Ravi
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Adam D. Irwin
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| |
Collapse
|
2
|
Kawai Y, Nakayama A, Fukushima H. Identification of sepsis-causing bacteria from whole blood without culture using primers with no cross-reactivity to human DNA. J Microbiol Methods 2024; 223:106982. [PMID: 38942122 DOI: 10.1016/j.mimet.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Sepsis is a major health concern globally, and identification of the causative organism usually takes several days. Furthermore, molecular amplification using whole blood from patients with sepsis remains challenging because of primer cross-reactivity with human DNA, which can delay appropriate clinical intervention. To address these concerns, we designed primers that could reduce cross-reactivity. By evaluating these primers against human DNA, we confirmed that the cross-reactivity observed with conventional primers was notably absent. In silico PCR further demonstrated the specificity and efficiency of the designed primers across 23 bacterial species that are often associated with sepsis. When tested using blood samples from sepsis patients, the designed primers showed moderate sensitivity and high specificity. Surprisingly, our method identified bacteria even in samples that were detected at other sites but tested negative using conventional blood culture methods. Although we identified some challenges, such as contamination with Acetobacter aceti due to the saponin pretreatment of samples, the developed method demonstrates remarkable potential for rapid identification of the causative organisms of sepsis and provides a new avenue for diagnosis in clinical practice.
Collapse
Affiliation(s)
- Yasuyuki Kawai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Shijo-cho, Kashihara, Nara, Japan.
| | - Akifumi Nakayama
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Ichihiraga, Seki, Gifu, Japan
| | - Hidetada Fukushima
- Department of Emergency and Critical Care Medicine, Nara Medical University, Shijo-cho, Kashihara, Nara, Japan
| |
Collapse
|
3
|
Test Performance and Potential Clinical Utility of the GenMark Dx ePlex Blood Culture Identification Gram-Negative Panel. Microbiol Spectr 2023; 11:e0409222. [PMID: 36688641 PMCID: PMC9927486 DOI: 10.1128/spectrum.04092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The test performance and potential clinical utility of the ePlex blood culture identification Gram-negative (BCID-GN) panel was evaluated relative to matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry on bacterial isolates and conventional antimicrobial susceptibility testing. The majority (106/108, 98.1%) of GN bacteria identified by MALDI were on the BCID-GN panel, and valid tests (107/108, 99.1%) yielded results on average 26.7 h earlier. For all valid tests with on-panel organisms, the positive percent agreement was 102/105 (97.2%) with 3 false negatives and the negative percent agreement was 105/105. Chart review (n = 98) showed that in conjunction with Gram stain results, negative pan-Gram-positive (GP) markers provided the opportunity to discontinue GP antibiotic coverage in 63/98 (64.3%) cases on average 26.2 h earlier. Only 8/12 (66.7%) Enterobacterales isolates with resistance to third-generation cephalosporins harbored the CTX-M gene. In contrast, 8/8 CTX-M+ samples yielded a resistant isolate. Detection of 1 Stenotrophomonas maltophilia (18 h), 1 OXA23/48+ Acinetobacter baumannii (52.4 h), and 3 CTX-M+ Enterobacterales isolates on ineffective treatment (47.1 h) and 1 on suboptimal therapy (72.6 h) would have additionally enabled early antimicrobial optimization in 6/98 (6.1%) patients. IMPORTANCE The GenMark Dx ePlex rapid blood culture diagnostic system enables earlier time to identification of antimicrobial-resistant Gram-negative bacteria causing bloodstream infections. Its ability to rule out Gram-positive bacteria enabled early discontinuation of unnecessary antibiotics in 63/98 (64.3%) cases on average 26.2 h earlier. Detection of bacteria harboring the CTX-M gene as well as early identification of highly resistant bacteria such as Stenotrophomonas maltophilia and Acinetobacter baumannii enabled optimization of ineffective therapy in 6/98 (6.1%) patients. Its implementation in clinical microbiology laboratories optimizes therapy and improves patient care.
Collapse
|
4
|
Caméléna F, Péan de Ponfilly G, Pailhoriès H, Bonzon L, Alanio A, Poncin T, Lafaurie M, Dépret F, Cambau E, Godreuil S, Chenouard R, Le Monnier A, Jacquier H, Berçot B. Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. Microbiol Spectr 2023; 11:e0254722. [PMID: 36519852 PMCID: PMC9927563 DOI: 10.1128/spectrum.02547-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the blaCTX-M gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals.
Collapse
Affiliation(s)
- François Caméléna
- Département de Bactériologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Gauthier Péan de Ponfilly
- Service de Microbiologie clinique, Groupe hospitalier Paris Saint Joseph, Paris, France
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Châtenay Malabry, France
| | - Hélène Pailhoriès
- Laboratoire de Bactériologie, Institut de Biologie en Santé, Centre Hospitalier Universitaire d’Angers, Laboratoire HIFIH, UPRES EA3859, SFR ICAT 4208, Université d’Angers, Angers, France
| | - Lucas Bonzon
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier et MIVEGEC, UMR IRD-CNRS-Université de Montpellier, Montpellier, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS, Unité de Mycologie Moléculaire, UMR2000, Paris, France
| | - Thibaut Poncin
- Département de Bactériologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Matthieu Lafaurie
- Département des Maladies Infectieuses et Tropicales, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - François Dépret
- Département d’Anesthésie et Réanimation chirurgicale et brûlés, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Cambau
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- Laboratoire de mycobactériologie spécialisée et de référence, Laboratoire associé du Centre National de Référence des mycobactéries et résistance des mycobactéries aux antituberculeux, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier et MIVEGEC, UMR IRD-CNRS-Université de Montpellier, Montpellier, France
| | - Rachel Chenouard
- Laboratoire de Bactériologie, Institut de Biologie en Santé, Centre Hospitalier Universitaire d’Angers, Laboratoire HIFIH, UPRES EA3859, SFR ICAT 4208, Université d’Angers, Angers, France
| | - Alban Le Monnier
- Service de Microbiologie clinique, Groupe hospitalier Paris Saint Joseph, Paris, France
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, Châtenay Malabry, France
| | - Hervé Jacquier
- Département de Bactériologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Béatrice Berçot
- Département de Bactériologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand Widal, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| |
Collapse
|
5
|
Relich RF, Abbott AN. Syndromic and Point-of-Care Molecular Testing. Clin Lab Med 2022; 42:507-531. [PMID: 36368779 DOI: 10.1016/j.cll.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan F Relich
- Division of Clinical Microbiology, Indiana University Health Pathology Laboratory, Indiana University Health and Indiana University School of Medicine, Suite 6027E, 350 West 11th Street, Indianapolis, IN 46202, USA.
| | - April N Abbott
- Department of Laboratory Medicine, Deaconess Hospital, 600 Mary Street, Evansville, IN 47747, USA
| |
Collapse
|
6
|
Zhang D, Luo Y, Zeng X, Yu Y, Wu Y. Developing a multiplex PCR-based assay kit for bloodstream infection by analyzing genomic big data. J Clin Lab Anal 2022; 36:e24686. [PMID: 36045601 PMCID: PMC9550966 DOI: 10.1002/jcla.24686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In recent years, the incidence of bloodstream infections (BSI) has increased, the composition of pathogenic bacteria has changed, and drug resistance among bacteria has gradually increased due to the widespread use of interventional techniques, broad-spectrum antibacterial drugs, hormones, and immunosuppressive agents. Here, we have developed a multiplex PCR assay kit for the detection of pathogens (14 Gram-negative bacteria, 15 Gram-positive bacteria, and 4 fungi) in whole blood from patients with BSI using five-color fluorescent multiplex PCR followed by capillary electrophoresis. Our assay exhibits a diagnosis of higher quality and an improved detection rate for common pathogens. METHODS A local genome DNA database of 33 pathogenic bacteria was constructed. Next, "Exhaustive" primer search of the full coding sequence of the reference genomes of these bacteria was performed. Panels with minimal interactions between primers and amplicons were selected by random sampling and testing by a recursive algorithm. Primers and Mg2+ concentrations and PCR reaction procedures were optimized to maximize the detection efficacy. RESULTS The LOD of the kit was determined as 100 copies/μl. Using clinical samples, results generated by this kit and regular blood culture method were found to be 95.08% consistent. Additionally, six pathogens which were unidentifiable by blood culture were successfully detected by this kit. CONCLUSION Our study provided a bioinformatics approach to the challenge of primer design in multiplex PCR, and combined with optimized wet lab practice, a multiplex PCR-based assay kit for BSI with higher sensitivity and accuracy than blood culture was produced.
Collapse
Affiliation(s)
- Dijun Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Ningbo Health Gene Technologies Co., Ltd., Ningbo, China
| | - Yong Luo
- Ningbo Health Gene Technologies Co., Ltd., Ningbo, China
| | - Xianping Zeng
- Ningbo Health Gene Technologies Co., Ltd., Ningbo, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Wu
- Ningbo Health Gene Technologies Co., Ltd., Ningbo, China
| |
Collapse
|
7
|
Analytical Performance and Potential Clinical Utility of the GenMark Dx ePlex® Blood Culture Identification Gram-Positive Panel. Diagn Microbiol Infect Dis 2022; 104:115762. [DOI: 10.1016/j.diagmicrobio.2022.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
8
|
Application of a solid-phase microextraction-gas chromatography-mass spectrometry/metal oxide sensor system for detection of antibiotic susceptibility in urinary tract infection-causing Escherichia coli - A proof of principle study. Adv Med Sci 2022; 67:1-9. [PMID: 34562855 DOI: 10.1016/j.advms.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE Antibiotic resistance is widespread throughout the world and represents a serious health concern. There is an urgent need for the development of novel tools for rapidly distinguishing antibiotic resistant bacteria from susceptible strains. Previous work has demonstrated that differences in antimicrobial susceptibility can be reflected in differences in the profile of volatile organic compounds (VOCs) produced by dissimilar strains. The aim of this study was to investigate the effect of the presence of cephalosporin antibiotics on the VOC profile of extended spectrum beta-lactamase (ESBL) and non-ESBL producing strains of Escherichia coli. MATERIAL AND METHODS In this study, VOCs from strains of Escherichia coli positive and negative for the most commonly encountered ESBL, CTX-M in the presence of cephalosporin antibiotics were assessed using solid-phase microextraction (SPME) coupled with a combined gas chromatography-mass spectrometry/metal oxide sensor (GC-MS/MOS) system. RESULTS Our proof-of-concept study allowed for distinguishing CTX-M positive and negative bacteria within 2 h after the addition of antibiotics. One MOS signal (RT: 22.6) showed a statistically significant three-way interaction (p = 0.033) in addition to significant two-way interactions for culture and additive (p = 0.046) plus time and additive (p = 0.020). There were also significant effects observed for time (p = 0.009), culture (p = 0.030) and additive (p = 0.028). No effects were observed in the MS data. CONCLUSIONS The results of our study showed the potential of VOC analysis using SPME combined with a GC-MS/MOS system for the early detection of CTX-M-producing, antibiotic-resistant E. coli, responsible for urinary tract infections (UTIs).
Collapse
|
9
|
Cassidy H, Van Genne M, Lizarazo-Forero E, Gard L, Niesters HGM. A discussion of syndromic molecular testing for clinical care. J Antimicrob Chemother 2021; 76:iii58-iii66. [PMID: 34555161 PMCID: PMC8460109 DOI: 10.1093/jac/dkab243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current molecular detection methods for single or multiplex pathogens by real-time PCR generally offer great sensitivity and specificity. However, many infectious pathogens often result in very similar clinical presentations, complicating the test-order for physicians who have to narrow down the causative agent prior to in-house PCR testing. As a consequence, the intuitive response is to start empirical therapy to treat a broad spectrum of possible pathogens. Syndromic molecular testing has been increasingly integrated into routine clinical care, either to provide diagnostic, epidemiological or patient management information. These multiplex panels can be used to screen for predefined infectious disease pathogens simultaneously within a 1 h timeframe, creating opportunities for rapid diagnostics. Conversely, syndromic panels have their own challenges and must be adaptable to the evolving demands of the clinical setting. Firstly, questions have been raised regarding the clinical relevance of some of the targets included in the panels and secondly, there is the added expense of integration into the clinical laboratory. Here, we aim to discuss some of the factors that should be considered before performing syndromic testing rather than traditional low-plex in-house PCR.
Collapse
Affiliation(s)
- Hayley Cassidy
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, The Netherlands
| | - Mart Van Genne
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, The Netherlands
| | - Erley Lizarazo-Forero
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, The Netherlands
| | - Lilli Gard
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, The Netherlands
| | - Hubert G M Niesters
- The University of Groningen, University Medical Centre Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, The Netherlands
| |
Collapse
|
10
|
Dumkow LE, Worden LJ, Rao SN. Syndromic diagnostic testing: a new way to approach patient care in the treatment of infectious diseases. J Antimicrob Chemother 2021; 76:iii4-iii11. [PMID: 34555157 PMCID: PMC8460095 DOI: 10.1093/jac/dkab245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Advanced microbiology technologies such as multiplex molecular assays (i.e. syndromic diagnostic tests) are a novel approach to the rapid diagnosis of common infectious diseases. As the global burden of antimicrobial resistance continues to rise, the judicious use of antimicrobials is of utmost importance. Syndromic panels are now being recognized in some clinical practice guidelines as a 'game-changer' in the diagnosis of infectious diseases. These syndromic panels, if implemented thoughtfully and interpreted carefully, have the potential to improve patient outcomes through improved clinical decision making, optimized laboratory workflow, and enhanced antimicrobial stewardship. This paper reviews the potential benefits of and considerations regarding various infectious diseases syndromic panels, and highlights how to maximize impact through collaboration between clinical microbiology laboratory and antimicrobial stewardship programmes.
Collapse
Affiliation(s)
- Lisa E Dumkow
- Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Lacy J Worden
- Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | | |
Collapse
|
11
|
Comparing the Clinical Utility of Rapid Diagnostics for Treatment of Bloodstream Infections Using Desirability of Outcome Ranking Approach for the Management of Antibiotic Therapy (DOOR-MAT). Antimicrob Agents Chemother 2021; 65:e0044121. [PMID: 34228533 PMCID: PMC8370220 DOI: 10.1128/aac.00441-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Decisions regarding which rapid diagnostic test (RDT) for bloodstream infections to implement remain challenging given the diversity of organisms detected by different platforms. We used the desirability of outcome ranking management of antimicrobial therapy (DOOR-MAT) as a framework to compare two RDT platforms on potential desirability of antimicrobial therapy decisions. An observational study was performed at University of Maryland Medical System comparing Verigene blood culture (BC) to GenMark Dx ePlex blood culture ID (BCID) (research use only) panels on blood cultures from adult patients. Positive percent agreement (PPA) between each RDT platform and Vitek MS was calculated for comparison of on-panel targets. Theoretical antimicrobial decisions were made based on RDT results, taking into consideration patient parameters, antimicrobial stewardship practices, and local infectious diseases epidemiology. DOOR-MAT with a partial credit scoring system was applied to these decisions, and mean scores were compared across platforms using a paired t test. The study consisted of 160 unique patients. The Verigene BC PPA was 98.6% (95% confidence interval [CI], 95.1 to 99.8), and ePlex BCID PPA was 98% (95% CI, 94.3 to 99.6). Among the 31 organisms not on the Verigene BC panels, 61% were identified by the ePlex BCID panels. The mean (standard deviation [SD]) DOOR-MAT score for Verigene BC was 86.8 (28.5), while that for ePlex BCID was 91.9 (23.1) (P = 0.01). Both RDT platforms had high PPA for on-panel targets. The ePlex BCID was able to identify more organisms than Verigene, resulting in higher mean DOOR-MAT scores.
Collapse
|
12
|
Tritle BJ, Watteyne R, Hickman A, Vento TJ, Lopansri BK, Collingridge DS, Veillette JJ. No Implementation Without Representation: Real-Time Pharmacist Intervention Optimizes Rapid Diagnostic Tests for Bacteremia at a Small Community Hospital. Hosp Pharm 2021; 57:377-384. [DOI: 10.1177/00185787211037554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Rapid diagnostic tests (RDTs) for bacteremia allow for early antimicrobial therapy modification based on organism and resistance gene identification. Studies suggest patient outcomes are optimized when infectious disease (ID)-trained antimicrobial stewardship personnel intervene on RDT results. However, data are limited regarding RDT implementation at small community hospitals, which often lack access to on-site ID clinicians. Methods: This study evaluated the impact of RDTs with and without real-time pharmacist intervention (RTPI) at a small community hospital with local pharmacist training and asynchronous support from a remote ID Telehealth pharmacist. Time to targeted therapy (TTT) in patients with bacteremia was compared retrospectively across 3 different time periods: a control without RDT, RDT-only, and RDT with RTPI. Results: Median TTT was significantly faster in both the RDT with RTPI and RDT-only groups compared with the control group (2 vs 25 vs 51 hours respectively; P < .001). TTT was numerically faster for RDT with RTPI compared with RDT-only but did not reach statistical significance ( P = .078). Median time to any de-escalation was significantly shorter for RDT with RTPI compared with both RDT-only (14 vs 33 hours; P = .012) and the control group (14 vs 45 hours; P < .001). Median length of stay was also significantly shorter in both RDT groups compared with the control group (4.0 vs 4.1 vs 5.5 hours; P = .013). Conclusion: This study supports RDT use for bacteremia in a small community hospital with ID Telehealth support, suggesting additional benefit with RTPI.
Collapse
Affiliation(s)
- Brandon J. Tritle
- Department of Pharmacy, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
| | - Robert Watteyne
- Department of Pharmacy, Intermountain Healthcare, Logan Regional Hospital, Logan, UT, USA
| | - Abby Hickman
- Department of Pharmacy, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
| | - Todd J. Vento
- Infectious Diseases Telehealth Service, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
- Division of Infectious Diseases and Epidemiology, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
| | - Bert K. Lopansri
- Division of Infectious Diseases and Epidemiology, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
| | - Dave S. Collingridge
- Office of Research, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
| | - John J. Veillette
- Department of Pharmacy, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
- Infectious Diseases Telehealth Service, Intermountain Healthcare, Intermountain Medical Center, Murray, UT, USA
| |
Collapse
|
13
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
14
|
Claeys KC, Schlaffer K, Smith R, Hitchcock S, Jiang Y, Evans S, Johnson JK, Leekha S. Day at the Races: Comparing BioFire FilmArray Blood Culture ID Panels to Verigene Blood Culture in Gram-negative Bloodstream Infections using DOOR-MAT Analysis. Clin Infect Dis 2021; 73:1103-1106. [PMID: 33772269 PMCID: PMC8442774 DOI: 10.1093/cid/ciab262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Three rapid diagnostic test panels (Verigene BC-GN, BioFire BCID, and BCID 2 [RUO]) were compared using the Desirability of Outcome Ranking Management of Antimicrobial Therapy (DOOR-MAT) to evaluate potential downstream antimicrobial prescribing decisions resulting from the panels’ different organism and resistance detection. BioFire BCID 2 (RUO) had the best mean DOOR-MAT scores.
Collapse
Affiliation(s)
- Kimberly C Claeys
- Department Pharmacy Practice and Science, University to Maryland School of Pharmacy, Baltimore, MD, USA
| | - Kathryn Schlaffer
- Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA
| | - Richard Smith
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Hitchcock
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunyun Jiang
- Biostatistics Center and the Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Scott Evans
- Biostatistics Center and the Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Surbhi Leekha
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Jackson N, Borges CA, Tarlton NJ, Resendez A, Milton AK, de Boer TR, Butcher CR, Murthy N, Riley LW. A rapid, antibiotic susceptibility test for multidrug-resistant, Gram-negative bacterial uropathogens using the biochemical assay, DETECT. J Microbiol Methods 2021; 182:106160. [PMID: 33548393 DOI: 10.1016/j.mimet.2021.106160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The increasing prevalence of extended spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) β-lactamases among Enterobacterales threatens our ability to treat urinary tract infections (UTIs). These organisms are resistant to most β-lactam antibiotics and are frequently multidrug-resistant (MDR). Consequently, they are often resistant to antibiotics used to empirically treat UTIs. The lack of rapid diagnostic and antibiotic susceptibility tests (AST) makes clinical management of UTIs caused by such organisms difficult, as standard culture and susceptibility assays require several days. We have adapted a biochemical detection assay, termed dual-enzyme trigger-enabled cascade technology (DETECT) for rapid detection of resistance (time-to-result of 3 h) to other antibiotics commonly used in treatment of UTIs. DETECT is activated by the presence of CTX-M and pAmpC β-lactamases. In this proof-of-concept study, the adapted DETECT assay (AST-DETECT) has been performed on pure-cultures of Klebsiella pneumoniae and Escherichia coli (48 isolates) expressing ESBL or pAmpC β-lactamases to perform AST for ciprofloxacin (sensitivity 96.9%, specificity 100%, accuracy 97.9%) nitrofurantoin (sensitivity 95.7%, specificity 91.7%, accuracy 94%) and trimethoprim/sulfamethoxazole (sensitivity 83.3%, specificity 100%, accuracy 89.4%). These results suggest that AST-DETECT may be adapted as a potential diagnostic platform to rapidly detect multidrug-resistant E. coli and K. pneumoniae that cause UTI.
Collapse
Affiliation(s)
- Nicole Jackson
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| | - Clarissa A Borges
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA
| | - Nicole J Tarlton
- Department of Microbiology, BioAmp Diagnostics, Inc., San Carlos, CA, USA
| | - Angel Resendez
- Department of Chemistry, BioAmp Diagnostics, Inc., San Carlos, CA, USA
| | | | - Tara R de Boer
- Department of Chemistry, BioAmp Diagnostics, Inc., San Carlos, CA, USA
| | - Cheyenne R Butcher
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA
| | - Niren Murthy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Lee W Riley
- School of Public Health, Department of Infectious Diseases and Vaccinology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Nakano S, Tomaru Y, Kubota T, Takase H, Mochizuki M, Shimizu N, Sugita S. Multiplex Solid-Phase Real-Time Polymerase Chain Reaction without DNA Extraction: A Rapid Intraoperative Diagnosis Using Microvolumes. Ophthalmology 2020; 128:729-739. [PMID: 32987046 DOI: 10.1016/j.ophtha.2020.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Current polymerase chain reaction (PCR) methods for the diagnosis of infections are time consuming and require large sample volume and skilled technicians. We developed a novel, easy-to-use, and rapid (processing time, 1 minute; total time, 33 minutes) multiplex real-time PCR test (Direct Strip PCR) that did not require DNA extraction to detect 9 pathogens that could cause uveitis in 20-μl samples. DESIGN Multicenter prospective evaluation of a diagnostic PCR test. PARTICIPANTS A total of 511 participants (patients with infectious uveitis and controls) were examined at 18 institutes worldwide. METHODS After validation, intraocular fluid samples were subjected to etiologic or exclusive diagnosis, including intraoperative rapid diagnosis. MAIN OUTCOME MEASURES The concordance and correlations between Direct Strip PCR and quantitative PCR (qPCR) results. RESULTS Direct Strip PCR exhibited rapid detection, good repeatability and specificity, long storage stability, and detection ability equal to that of qPCR. It also showed low interinstitutional variability compared with qPCR, even when PCR beginners used various real-time PCR machines. The Direct Strip PCR for 9 pathogens exhibited high concordance against the qPCR (positive concordance rate, 98.8%-100%; negative concordance rate, 99.8%-100%; κ coefficient, 0.969-1.000; P < 0.001-0.031). Additionally, results obtained using Direct Strip PCR and qPCR were highly correlated (ρ = 0.748; P < 0.001). This assay was used for rapid intraoperative diagnosis. CONCLUSIONS The Direct Strip PCR test may improve the prognosis of various infectious diseases because it facilitates rapid etiologic evaluation at the first hospital visit and can be used for intraoperative diagnosis.
Collapse
Affiliation(s)
- Satoko Nakano
- Department of Ophthalmology, Oita University, Yufu, Japan
| | - Yasuhiro Tomaru
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Hiroshi Takase
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, Tokyo, Japan; Miyata Eye Hospital, Miyakonojo, Japan
| | - Norio Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sunao Sugita
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | | |
Collapse
|
17
|
Claeys KC, Heil EL, Hitchcock S, Johnson JK, Leekha S. Management of Gram-Negative Bloodstream Infections in the Era of Rapid Diagnostic Testing: Impact With and Without Antibiotic Stewardship. Open Forum Infect Dis 2020; 7:ofaa427. [PMID: 33134414 PMCID: PMC7585329 DOI: 10.1093/ofid/ofaa427] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Verigene Blood-Culture Gram-Negative is a rapid diagnostic test (RDT) that detects gram-negatives (GNs) and resistance within hours from gram stain. The majority of the data support the use of RDTs with antimicrobial stewardship (AMS) intervention in gram-positive bloodstream infection (BSI). Less is known about GN BSI. Methods This was a retrospective quasi-experimental (nonrandomized) study of adult patients with RDT-target GN BSI comparing patients pre-RDT/AMS vs post-RDT/pre-AMS vs post-RDT/AMS. Optimal therapy was defined as appropriate coverage with the narrowest spectrum, accounting for source and co-infecting organisms. Time to optimal therapy was analyzed using Kaplan-Meier and multivariable Cox proportional hazards regression. Results Eight-hundred thirty-two patients were included; 237 pre-RDT/AMS vs 308 post-RDT/pre-AMS vs 237 post-RDT/AMS, respectively. The proportion of patients on optimal antibiotic therapy increased with each intervention (66.5% vs 78.9% vs 83.2%; P < .0001). Time to optimal therapy (interquartile range) decreased with introduction of RDT: 47 (7.9–67.7) hours vs 24.9 (12.4–55.2) hours vs 26.5 (10.3–66.5) hours (P = .09). Using multivariable modeling, infectious diseases (ID) consult was an effect modifier. Within the ID consult stratum, controlling for source and ICU stay, compared with the pre-RDT/AMS group, both post-RDT/pre-AMS (adjusted hazard ratio [aHR], 1.34; 95% CI, 1.04–1.72) and post-RDT/AMS (aHR, 1.28; 95% CI, 1.01–1.64), improved time to optimal therapy. This effect was not seen in the stratum without ID consult. Conclusions With the introduction of RDT and AMS, both proportion and time to optimal antibiotic therapy improved, especially among those with an existing ID consult. This study highlights the beneficial role of RDTs in GN BSI.
Collapse
Affiliation(s)
- Kimberly C Claeys
- Department Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Emily L Heil
- Department Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | | | | - Surbhi Leekha
- University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Mizusawa M. Updates on Rapid Diagnostic Tests in Infectious Diseases. MISSOURI MEDICINE 2020; 117:328-337. [PMID: 32848269 PMCID: PMC7431065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last two decades there have been dramatic advances in development of rapid diagnostic tests. Turnaround time of the assays have significantly been shortened which led to reductions in time to appropriate antimicrobial therapy and improvement of patient clinical outcomes. Molecular-based assays generally have better sensitivity than conventional methods, but the cost is higher. The results need to be interpreted cautiously as detection of colonized organisms, pathogen detection in asymptomatic patients, and false negative/positive can occur. Indications and cost-effectiveness need to be considered for appropriate utilization of rapid diagnostic tests.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri - Kansas City, Kansas City, Missouri
| |
Collapse
|
19
|
Nakano S, Tomaru Y, Kubota T, Takase H, Mochizuki M, Shimizu N, Sugita S. Evaluation of a Multiplex Strip PCR Test for Infectious Uveitis: A Prospective Multicenter Study. Am J Ophthalmol 2020; 213:252-259. [PMID: 31785234 DOI: 10.1016/j.ajo.2019.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE A novel multiplex polymerase chain reaction (PCR) test (Strip PCR) for 24 common ocular infectious disease pathogens was established. Solid-phase techniques provide stable, prompt, and accurate results while using less sample amount with lower cost than conventional quantitative real-time PCR (qPCR). Strip PCR for infectious uveitis was optimized and evaluated using intraocular samples. DESIGN Evaluation of diagnostic testing. METHODS We examined 722 samples at 14 institutions. Genomic DNA from aqueous humor and vitreous fluid was analyzed by qPCR and Strip PCR. Clinical diagnosis was determined based on symptoms, clinical findings, and laboratory tests. MainOutcomeMeasures: The diagnostic parameters of the Strip PCR were based on qPCR results. RESULTS Strip PCR showed low intra- and inter-institutional variability even when performed by technicians with various PCR skill levels. The targets of Strip PCR for infectious uveitis were optimized for 9 major pathogens (herpes simplex virus [HSV] 1, HSV2, varicella-zoster virus, human T-cell lymphotropic virus 1, human herpesvirus 6, Epstein-Barr virus, cytomegalovirus, Toxoplasma gondii, and Treponema pallidum) with 772 intraocular samples. The Strip PCR successfully detected pathogen DNA at concentrations ranging from 100 to 109 copies/mL in 252 of the 255 qPCR-positive samples. It yielded negative results for all the 191 qPCR-negative samples. Strip PCR had higher sensitivity (98.8%), specificity (98.5%), positive predictive value (98.8%), and negative predictive value (98.5%) than qPCR, with distinct primers. The Strip PCR results had strong correlation with that of the qPCR (r = 0.838) and they were consistent with the clinical diagnosis. CONCLUSIONS Easy-to-use Strip PCR is recommended for rapid diagnosis of infectious uveitis, as its results are equivalent to that of conventional qPCR.
Collapse
|
20
|
Clinical Performance of the Novel GenMark Dx ePlex Blood Culture ID Gram-Positive Panel. J Clin Microbiol 2020; 58:JCM.01730-19. [PMID: 31996444 PMCID: PMC7098771 DOI: 10.1128/jcm.01730-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022] Open
Abstract
Rapid identification from positive blood cultures is standard of care (SOC) in many clinical microbiology laboratories. The GenMark Dx ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel is a multiplex nucleic acid amplification assay based on competitive DNA hybridization and electrochemical detection using eSensor technology. This multicenter study compared the investigational-use-only (IUO) BCID-GP Panel to other methods of identification of 20 Gram-positive bacteria, four antimicrobial resistance genes, and both Pan Candida and Pan Gram-Negative targets that are unique to the BCID-GP Panel. Rapid identification from positive blood cultures is standard of care (SOC) in many clinical microbiology laboratories. The GenMark Dx ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel is a multiplex nucleic acid amplification assay based on competitive DNA hybridization and electrochemical detection using eSensor technology. This multicenter study compared the investigational-use-only (IUO) BCID-GP Panel to other methods of identification of 20 Gram-positive bacteria, four antimicrobial resistance genes, and both Pan Candida and Pan Gram-Negative targets that are unique to the BCID-GP Panel. Ten microbiology laboratories throughout the United States collected residual, deidentified positive blood culture samples for analysis. Five laboratories tested both clinical and contrived samples with the BCID-GP Panel. Comparator identification methods included each laboratory’s SOC, which included matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and automated identification systems as well as targeted PCR/analytically validated real-time PCR (qPCR) with bidirectional sequencing. A total of 2,342 evaluable samples (1,777 clinical and 565 contrived) were tested with the BCID-GP Panel. The overall sample accuracy for on-panel organisms was 89% before resolution of discordant results. For pathogenic Gram-positive targets (Bacillus cereus group, Enterococcus spp., Enterococcus faecalis, Enterococcus faecium, Staphylococcus spp., Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Listeria spp., Listeria monocytogenes, Streptococcus spp., Streptococcus agalactiae, Streptococcus anginosus group, Streptococcus pneumoniae, and Streptococcus pyogenes), positive percent agreement (PPA) and negative percent agreement (NPA) ranged from 93.1% to 100% and 98.8% to 100%, respectively. For contamination rule-out targets (Bacillus subtilis group, Corynebacterium, Cutibacterium acnes, Lactobacillus, and Micrococcus), PPA and NPA ranged from 84.5% to 100% and 99.9% to 100%, respectively. Positive percent agreement and NPA for the Pan Candida and Pan Gram-Negative targets were 92.4% and 95.7% for the former and 99.9% and 99.6% for the latter. The PPAs for resistance markers were as follows: mecA, 97.2%; mecC, 100%; vanA, 96.8%; and vanB, 100%. Negative percent agreement ranged from 96.6% to 100%. In conclusion, the ePlex BCID-GP Panel compares favorably to SOC and targeted molecular methods for the identification of 20 Gram-positive pathogens and four antimicrobial resistance genes in positive blood culture bottles. This panel detects a broad range of pathogens and mixed infections with yeast and Gram-negative organisms from the same positive blood culture bottle.
Collapse
|
21
|
Abstract
The clinical microbiology laboratory relies on traditional diagnostic methods such as culturing, Gram stains, and biochemical testing. Receipt of a high-quality specimen with an appropriate test order is integral to accurate testing. Recent technological advancements have led to decreased time to results and improved diagnostic accuracy. Examples of advancements discussed in this chapter include automation of bacterial culture processing and incubation, as well as introduction of mass spectrometry for the proteomic identification of microorganisms. In addition, molecular testing is increasingly common in the clinical laboratory. Commercially available multiplex molecular assays simultaneously test for a broad array of syndromic-related pathogens, providing rapid and sensitive diagnostic results. Molecular advancements have also transformed point-of-care (POC) microbiology testing, and molecular POC assays may largely supplant traditional rapid antigen testing in the future. Integration of new technologies with traditional testing methods has led to improved quality and value in the clinical microbiology laboratory. After reviewing this chapter, the reader will be able to:List key considerations for specimen collection for microbiology testing. Discuss the advantages and limitations of automation in the clinical microbiology laboratory. Describe the evolution of microorganism identification methods. Discuss the benefits and limitations of molecular microbiology point-of-care testing. Summarize currently available multiplex molecular microbiology testing options.
Collapse
|
22
|
Palavecino EL, Williamson JC, Ohl CA. Collaborative Antimicrobial Stewardship: Working with Microbiology. Infect Dis Clin North Am 2019; 34:51-65. [PMID: 31836331 PMCID: PMC7127374 DOI: 10.1016/j.idc.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There have been tremendous advances in methodologies available for detection and identification of organisms causing infections. Providers can now obtain identification results and antimicrobial susceptibility results in a shorter period of time. However, declining health care resources highlight the importance of selecting the right test at the right time to maximize diagnostic benefits. Therefore, the role of the antimicrobial stewardship team in the clinical microbiology laboratory has expanded to include diagnostic stewardship and provision of guidance on test selection for diagnosis and management of infection. This review focuses on the experience of our group in collaborative stewardship, emphasizing successes and challenges.
Collapse
Affiliation(s)
| | - John C Williamson
- Department of Pharmacy, Wake Forest Baptist Health, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Christopher A Ohl
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, NC, USA.
| |
Collapse
|
23
|
Florio W, Cappellini S, Giordano C, Vecchione A, Ghelardi E, Lupetti A. A new culture-based method for rapid identification of microorganisms in polymicrobial blood cultures by MALDI-TOF MS. BMC Microbiol 2019; 19:267. [PMID: 31783786 PMCID: PMC6884914 DOI: 10.1186/s12866-019-1641-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background The application of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) to microbial identification has allowed the development of rapid methods for identification of microorganisms directly in positive, blood cultures (BCs). These methods can yield accurate results for monomicrobial BCs, but often fail to identify multiple microorganisms in polymicrobial BCs. The present study was aimed at establishing a rapid and simple method for identification of bacteria and yeast in polymicrobial BCs from patients with bloodstream infection. Results The rapid method herein proposed is based on short-term culture in liquid media allowing selective growth of microorganisms recovered from polymicrobial BCs, followed by rapid identification by MALDI-TOF MS. To evaluate the accuracy of this method, 56 polymicrobial BCs were comparatively analyzed with the rapid and routine methods. The results showed concordant identification for both microbial species in 43/50 (86%) BCs containing two different microorganisms, and for two microbial species in six BCs containing more than two different species. Overall, 102/119 (85.7%) microorganisms were concordantly identified by the rapid and routine methods using a cut-off value of 1.700 for valid identification. The mean time to identification after BC positivity was about 4.2 h for streptococci/enterococci, 8.7 h for staphylococci, 11.1 h for Gram-negative bacteria, and 14.4 h for yeast, allowing a significant time saving compared to the routine method. Conclusions The proposed method allowed rapid and reliable microbial identification in polymicrobial BCs, and could provide clinicians with timely, useful information to streamline empirical antimicrobial therapy in critically ill patients.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Susanna Cappellini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Cesira Giordano
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Alessandra Vecchione
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 37, 56127, Pisa, Italy.
| |
Collapse
|
24
|
Rapid molecular tests for detection of antimicrobial resistance determinants in Gram-negative organisms from positive blood cultures: a systematic review and meta-analysis. Clin Microbiol Infect 2019; 26:271-280. [PMID: 31751768 DOI: 10.1016/j.cmi.2019.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Timely detection of antimicrobial (cephalosporin/carbapenem) resistance (AMR) determinants is crucial to the clinical management of bloodstream infections caused by Gram-negative bacteria (GNB). OBJECTIVES To review and meta-analyse the evidence for using commercially available molecular tests for the direct detection of AMR determinants in GNB-positive blood cultures (PBCs). DATA SOURCES PubMed, Scopus and ISI Web of Knowledge. STUDY ELIGIBILITY CRITERIA Clinical studies evaluating the performance of two major commercial systems, namely the Verigene® and FilmArray® systems, for rapid testing of GNB-PBCs, in comparison with the phenotypic or genotypic methods performed on GNB-PBC isolates. METHODS Literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria and, for meta-analysis of sensitivity and specificity of both systems, bivariate random-effects model. RESULTS Twenty studies were identified (3310 isolates) from 2006 to 2019. Nine studies were conducted in East Asia. In 15 studies using phenotypic comparators (1930 isolates), 1014 (52.5%) isolates were Escherichia coli, and 287 (14.9%) of all the isolates displayed AMR phenotypes. In five studies using genotypic comparators (1380 isolates), 585 (42.4%) were E. coli, and 100 (7.2%) of all the isolates displayed AMR genotypes. Pooled sensitivity and specificity estimates for detection of AMR determinants by the Verigene (i.e. CTX-M, IMP, KPC, NDM, OXA and VIM) and/or FilmArray (i.e. KPC) systems were 85.3% (95% CI 79.9%-89.4%) and 99.1% (95% CI 98.2%-99.5%), respectively, across the 15 studies, and 95.5% (95% CI 89.2%-98.2%) and 99.7% (95% CI 99.1%-99.9%), respectively, across the five studies. CONCLUSIONS Our findings show that the Verigene and FilmArray systems may be a valid adjunct to the conventional microbiology (phenotypic or genotypic) methods used to identify AMR in GNBs. The FilmArray system detects only one AMR genotype, namely KPC, limiting its use. Both Verigene and FilmArray systems can miss important cephalosporin/carbapenem resistance phenotypes in a minority of cases. However, the sensitivity and specificity of both systems render them valuable clinical tools in timely identification of resistant isolates. Further studies will establish the prominence of such rapid diagnostics as standard of care in individuals with bloodstream infections.
Collapse
|
25
|
Marques MR, Choo Q, Ashtikar M, Rocha TC, Bremer-Hoffmann S, Wacker MG. Nanomedicines - Tiny particles and big challenges. Adv Drug Deliv Rev 2019; 151-152:23-43. [PMID: 31226397 DOI: 10.1016/j.addr.2019.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
After decades of research, nanotechnology has been used in a broad array of biomedical products including medical devices, drug products, drug substances, and pharmaceutical-grade excipients. But like many great achievements in science, there is a fine balance between the risks and opportunities of this new technology. Some materials and surface structures in the nanosize range can exert unexpected toxicities and merit a more detailed safety assessment. Regulatory agencies such as the United States Food and Drug Administration or the European Medicines Agency have started dealing with the potential risks posed by nanomaterials. Considering that a thorough characterization is one of the key aspects of controlling such risks this review presents the regulatory background of nanosafety assessment and provides some practical advice on how to characterize nanomaterials and drug formulations. Further, the challenges of how to maintain and monitor pharmaceutical quality through a highly complex production processes will be discussed.
Collapse
|
26
|
Ullberg M, Özenci V. Identification and antimicrobial susceptibility testing of Gram-positive and Gram-negative bacteria from positive blood cultures using the Accelerate Pheno™ system. Eur J Clin Microbiol Infect Dis 2019; 39:139-149. [PMID: 31641972 PMCID: PMC6962126 DOI: 10.1007/s10096-019-03703-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/04/2019] [Indexed: 12/03/2022]
Abstract
Rapid identification and antimicrobial susceptibility testing remain a crucial step for early efficient therapy of bloodstream infections. Traditional methods require turnaround times of at least 2 days, while rapid procedures are often associated with extended hands-on time. The Accelerate Pheno™ System provides microbial identification results within 90 min and susceptibility data in approximately 7 h directly from positive blood cultures with only few minutes of hands-on time. The aim of this study was, therefore, to evaluate the performance of the Accelerate Pheno™ System in identification and antimicrobial susceptibility testing of both Gram-positive and Gram-negative bacteria directly from clinical blood culture samples. We analyzed 108 and 67 blood culture bottles using the Accelerate PhenoTest™ BC kit with software version v1.0 and the FDA-cleared version v1.2, respectively. Reliable identification was achieved for Enterobacteriaceae, staphylococci, and enterococci, with 76/80 (95%), 42/46 (91%), and 10/11 (91%) correct identifications. Limitations were observed in the identification of streptococci, including Streptococcus pneumoniae and Streptococcus pyogenes, and coagulase-negative staphylococci. Antimicrobial susceptibility results for Enterobacteriaceae, for amikacin, ertapenem, ciprofloxacin, gentamicin, meropenem, and piperacillin-tazobactam ranged between 86 and 100% categorical agreement. Using v1.2, results for ceftazidime showed 100% concordance with the reference method. For staphylococci, the overall performance reached 92% using v1.2. Qualitative tests for detection of methicillin or macrolide-lincosamide-streptogramin B (MLSB) resistance caused major and very major errors for isolates. Overall, the present data show that the Accelerate Pheno™ system can, in combination with Gram stain, be used as a rapid complementation to standard microbial diagnosis of bloodstream infections.
Collapse
Affiliation(s)
- Måns Ullberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden.
| |
Collapse
|
27
|
Idelevich EA, Reischl U, Becker K. New Microbiological Techniques in the Diagnosis of Bloodstream Infections. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:822-832. [PMID: 30678752 DOI: 10.3238/arztebl.2018.0822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/04/2017] [Accepted: 10/12/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND When a bloodstream infection is suspected, the preliminary and definitive results of culture-based microbiological testing arrive too late to have any influence on the initial choice of empirical antibiotic treatment. METHODS This review is based on pertinent publications retrieved by a selective search of the literature and on the authors' clinical and scientific experience. RESULTS A number of technical advances now enable more rapid microbiological diagnosis of bloodstream infections. DNA- based techniques for the direct detection of pathogenic organisms in whole blood have not yet become established in routine use because of various limitations. On the other hand, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become available for routine use in clinical laboratories and has markedly shortened the time to diagnosis after blood samples that have been cultured in automated blood-culture systems turn positive. Further developments of this technique now enable it to be used directly for blood cultures that have been flagged positive, as well as for subcultures that have been incubated for only a short time on a solid nutrient medium. The microbial biomass of the subculture can also be used in parallel for more rapid susceptibility testing with conventional methods, or, in future, with MALDI-TOF MS. CONCLUSION The potential of all of these new techniques will only be realizable in practice if they are optimally embedded in the diagnostic process and if sufficient attention is paid to pre-analytical issues, particularly storage and transport times.
Collapse
|
28
|
Diagnosing and Managing Sepsis by Probing the Host Response to Infection: Advances, Opportunities, and Challenges. J Clin Microbiol 2019; 57:JCM.00425-19. [PMID: 31043466 DOI: 10.1128/jcm.00425-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a major source of mortality and morbidity globally. Accurately diagnosing sepsis remains challenging due to the heterogeneous nature of the disease, and delays in diagnosis and intervention contribute to high mortality rates. Measuring the host response to infection enables more rapid diagnosis of sepsis than is possible through direct detection of the causative pathogen, and recent advances in host response diagnostics and prognostics hold promise for improving outcomes. The current review discusses recent advances in the technologies used to probe the host response to infection, particularly those based on transcriptomics. These are discussed in the context of contemporary approaches to diagnosing and prognosing sepsis, and recommendations are made for successful development and validation of host response technologies.
Collapse
|
29
|
Evaluation of the Alfred AST® system for rapid antimicrobial susceptibility testing directly from positive blood cultures. Eur J Clin Microbiol Infect Dis 2019; 38:1665-1670. [DOI: 10.1007/s10096-019-03595-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
30
|
A methodological comparison of risk scores versus decision trees for predicting drug-resistant infections: A case study using extended-spectrum beta-lactamase (ESBL) bacteremia. Infect Control Hosp Epidemiol 2019; 40:400-407. [PMID: 30827286 DOI: 10.1017/ice.2019.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Timely identification of multidrug-resistant gram-negative infections remains an epidemiological challenge. Statistical models for predicting drug resistance can offer utility where rapid diagnostics are unavailable or resource-impractical. Logistic regression-derived risk scores are common in the healthcare epidemiology literature. Machine learning-derived decision trees are an alternative approach for developing decision support tools. Our group previously reported on a decision tree for predicting ESBL bloodstream infections. Our objective in the current study was to develop a risk score from the same ESBL dataset to compare these 2 methods and to offer general guiding principles for using each approach. METHODS Using a dataset of 1,288 patients with Escherichia coli or Klebsiella spp bacteremia, we generated a risk score to predict the likelihood that a bacteremic patient was infected with an ESBL-producer. We evaluated discrimination (original and cross-validated models) using receiver operating characteristic curves and C statistics. We compared risk score and decision tree performance, and we reviewed their practical and methodological attributes. RESULTS In total, 194 patients (15%) were infected with ESBL-producing bacteremia. The clinical risk score included 14 variables, compared to the 5 decision-tree variables. The positive and negative predictive values of the risk score and decision tree were similar (>90%), but the C statistic of the risk score (0.87) was 10% higher. CONCLUSIONS A decision tree and risk score performed similarly for predicting ESBL infection. The decision tree was more user-friendly, with fewer variables for the end user, whereas the risk score offered higher discrimination and greater flexibility for adjusting sensitivity and specificity.
Collapse
|
31
|
Stempak LM, Vogel SA, Richter SS, Wyllie R, Procop GW. Routine Broad-Range Fungal Polymerase Chain Reaction With DNA Sequencing in Patients With Suspected Mycoses Does Not Add Value and Is Not Cost-Effective. Arch Pathol Lab Med 2018; 143:634-638. [DOI: 10.5858/arpa.2017-0299-oa] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
New molecular diagnostic tests regularly become available, and they may be assumed to be superior to traditional diagnostic studies. The added cost of these studies should be considered in conjunction with the value provided for patient care.
Objective.—
To assess the cost and diagnostic value of broad-range polymerase chain reaction (PCR) and DNA sequencing for the diagnosis of fungal infections compared with traditional studies.
Design.—
We reviewed the cost and clinical impact of broad-range fungal PCR/DNA sequencing for 65 specimens for which this test, a direct fungal examination, fungal culture, and a histopathologic assessment were performed.
Results.—
The sensitivity, specificity, and positive and negative predictive values for each of the assays studied were, respectively: histopathology (83.3%, 100%, 100%, and 98.3%); direct examination (66.7%, 100%, 100%, and 96.7%); fungal culture (83.3%, 100%, 100%, and 98.3%); and broad-range fungal PCR/DNA sequencing (83.3%, 95.0%, 62.5%, and 98.3%). The cost for broad-range fungal PCR/DNA sequencing was $32,500, compared with $8,591.70 for all traditional tests combined, for the 65 specimens included in this review.
Conclusions.—
Broad-range fungal PCR/DNA sequencing did not detect any infecting fungal pathogen that was not detected by at least 1 of the traditional methods, but 3 false-positives occurred. Broad-range fungal PCR/DNA sequencing is not a substitute for traditional laboratory studies and should be used judiciously to promote care affordability.
Collapse
Affiliation(s)
| | | | | | | | - Gary W. Procop
- From the Department of Pathology, The University of Mississippi Medical Center, Jackson (Dr Stempak); and the Pathology and Laboratory Medicine Institute (Ms Vogel and Drs Richter, Wyllie, and Procop) and Medical Operations (Drs Wyllie and Procop), Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
Schmitz JE, Tang YW. The GenMark ePlex ®: another weapon in the syndromic arsenal for infection diagnosis. Future Microbiol 2018; 13:1697-1708. [PMID: 30547684 DOI: 10.2217/fmb-2018-0258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As one of the most recent additions to the syndromic testing landscape, the ePlex® platform by GenMark Diagnostics is a system that combines the manufacturer's signature electrochemical detection technology with updated microfluidics, providing a new option for multiplex testing that is both rapid and requires minimal hands-on steps. In this review, we detail the ePlex platform and its current/future syndromic panels, with a particular focus on the respiratory pathogen panel - the platform's first assay to undergo clinical trials and receive regulatory approval in the USA. By keeping informed of these ever-expanding laboratory options, clinicians and microbiologists can stay positioned at the forefront of infectious disease diagnosis.
Collapse
Affiliation(s)
- Jonathan E Schmitz
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center & School of Medicine, Nashville, TN 37232, USA
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA.,Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
33
|
Comparison of the Fully Automated FilmArray BCID Assay to a 4-Hour Culture Test Coupled to Mass Spectrometry for Day 0 Identification of Microorganisms in Positive Blood Cultures. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7013470. [PMID: 30584536 PMCID: PMC6280299 DOI: 10.1155/2018/7013470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 01/11/2023]
Abstract
Rapid bacterial identification of positive blood culture is important for adapting the antimicrobial therapy in patients with blood stream infection. The aim of this study was to evaluate the performance of the multiplex FilmArray Blood Culture Identification (BCID) assay by comparison to an in-house protocol based on MALDI-TOF MS identification of microcolonies after a 4-hour culture, for identifying on the same day the microorganisms present in positive blood culture bottles. One hundred and fifty-three positive bottles from 123 patients were tested prospectively by the 3 techniques of bacterial identification: 11 bottles yielding negative results by the 3 tests were considered false positive (7.2%). The reference MALDI-TOF MS technique identified 134 monomicrobial (87.6%) and 8 double infections (5.2%), which resulted in a total of 150 microorganisms. Globally, 137 (91.3%) of these 150 pathogens were correctly identified by the fully automated multiplex FilmArray BCID system at the species or genus level on day of growth detection, versus 117 (78.8%) by MALDI-TOF MS identification on nascent microcolonies after a 4-hour culture (P < 0.01). By combining the two approaches, 140 (93.5%) of the positive bottles were identified successfully at day 0. These results confirm the excellent sensitivity of the FilmArray BCID assay, notably in case of multimicrobial infection. Due to the limited number of targets included into the test, it must be coupled to another identification strategy, as that presented in this study relying on MALDI-TOF MS identification of microcolonies obtained after a very short culture period.
Collapse
|
34
|
Application of BioFire FilmArray Blood Culture Identification panel for rapid identification of the causative agents of ventilator-associated pneumonia. Clin Microbiol Infect 2018; 24:1213.e1-1213.e4. [PMID: 29906599 DOI: 10.1016/j.cmi.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the ability of the BioFire FilmArray Blood Culture Identification (BCID) panel to rapidly detect pathogens producing late-onset ventilator-associated pneumonia (VAP), a severe infection often produced by Gram-negative bacteria. These microorganisms are frequently multidrug resistant and typically require broad-spectrum empiric treatment. METHODS In the context of an international multicentre clinical trial (MagicBullet), respiratory samples were collected at the time of suspicion of VAP from 165 patients in 32 participating hospitals in Spain, Greece and Italy. Microorganisms were identified using the BCID panel and compared with results obtained by conventional microbiologic techniques. RESULTS Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae were the most commonly identified species, representing 54.7% (70/128) of microorganisms. The BCID panel showed high global specificity (98.1%; 95% confidence interval, 96-100) and negative predictive values (96.6%) and a global sensitivity and positive predictive value of 78.6% (95% confidence interval, 70-88) and 87.3%, respectively, for these microorganisms. Importantly, the BCID panel provided results in only 1 hour directly from respiratory samples with minimal sample processing times. CONCLUSIONS The BCID panel may have clinical utility in rapidly ruling out microorganisms causing VAP, specifically multidrug-resistant Gram-negative species. This could facilitate the optimization of empiric treatment.
Collapse
|
35
|
Resistant Gram-Negative Bacteria and Diagnostic Point-of-Care Options for the Field Setting during Military Operations. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9395420. [PMID: 30009178 PMCID: PMC6020508 DOI: 10.1155/2018/9395420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022]
Abstract
The spread of multidrug-resistant bacteria in resource-poor settings affects the military medical service in case of deployments of soldiers to war and crisis zones. Patients with war injuries are prone to colonization or infection with multidrug-resistant bacteria. Resistant Gram-negative bacteria play a dominant role in military wound infections. Problematic hygiene conditions on deployment facilitate exposition of soldiers with subsequent colonization. Although colonizing strains are frequently cleared from their hosts after returning from deployment, transmission to close contacts of the soldiers in the home country cannot be excluded and therapeutic options are reduced if colonization progresses to invasive infection. Since sophisticated culture-based diagnostic approaches are typically not available in the field setting on deployment, molecular rapid diagnostic test systems are an option for transmission control if the locally prevalent molecular resistance mechanisms are known. Efforts for global resistance surveillance can contribute to better understanding of resistance distribution and spread at deployment sites. This review summarizes experience of the military medical services with multidrug resistance on deployment and with the influx of resistant strains to the home country and discusses potential use of available molecular rapid test systems as an option for the field setting.
Collapse
|
36
|
Descours G, Desmurs L, Hoang TLT, Ibranosyan M, Baume M, Ranc AG, Fuhrmann C, Dauwalder O, Salka W, Vandenesch F. Evaluation of the Accelerate Pheno™ system for rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria in bloodstream infections. Eur J Clin Microbiol Infect Dis 2018; 37:1573-1583. [PMID: 29808350 DOI: 10.1007/s10096-018-3287-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Identification and antimicrobial susceptibility testing (AST) are critical steps in the management of bloodstream infections. Our objective was to evaluate the performance of the Accelerate Pheno™ System, CE v1.2 software, for identification and AST of Gram-negative pathogens from positive blood culture bottles. A total of 104 bottles positive for Gram-negative bacteria collected from inpatients throughout our institution were randomly selected after Gram staining. The time-to-identification and AST results, and the raw AST results obtained by the Accelerate Pheno™ system and routine techniques (MALDI-TOF MS and VITEK®2, EUCAST guidelines) were compared. Any discrepant AST result was tested by microdilution. The Pheno™ significantly improved turn-around times for identification (5.3 versus 23.7 h; p < 0.0001) and AST (10.7 versus 35.1 h; p < 0.0001). Complete agreement between the Accelerate Pheno™ system and the MALDI-TOF MS for identification was observed for 96.2% of samples; it was 99% (98/99) for monomicrobial samples versus 40% (3/5) for polymicrobial ones. The overall categorical agreement for AST was 93.7%; it was notably decreased for beta-lactams (cefepime 84.4%, piperacillin-tazobactam 86.5%, ceftazidime 87.6%) or Pseudomonas aeruginosa (71.9%; with cefepime 33.3%, piperacillin-tazobactam 77.8%, ceftazidime 0%). Analysis of discrepant results found impaired performance of the Accelerate Pheno™ system for beta-lactams (except cefepime) in Enterobacteriales (six very major errors) and poor performance in P. aeruginosa. The Accelerate Pheno™ system significantly improved the turn-around times for bloodstream infection diagnosis. Nonetheless, improvements in the analysis of polymicrobial samples and in AST algorithms, notably beta-lactam testing in both P. aeruginosa and Enterobacteriales, are required for implementation in routine workflow.
Collapse
Affiliation(s)
- Ghislaine Descours
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France. .,Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon 1, Lyon, France. .,Université Lyon 1, Lyon, France.
| | - Laurent Desmurs
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France
| | - Thi Lam Thuy Hoang
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France
| | - Marine Ibranosyan
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France
| | - Maud Baume
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France
| | - Anne-Gaëlle Ranc
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France
| | - Christine Fuhrmann
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France.,Department of Hygiene, Centre Léon Bérard, Lyon, France
| | - Olivier Dauwalder
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France.,Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Waël Salka
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France
| | - François Vandenesch
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Microbiology Laboratory, Institute for Infectious Agents, Lyon, France.,Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon 1, Lyon, France.,Université Lyon 1, Lyon, France
| |
Collapse
|
37
|
Shelburne SA, Kim J, Munita JM, Sahasrabhojane P, Shields RK, Press EG, Li X, Arias CA, Cantarel B, Jiang Y, Kim MS, Aitken SL, Greenberg DE. Whole-Genome Sequencing Accurately Identifies Resistance to Extended-Spectrum β-Lactams for Major Gram-Negative Bacterial Pathogens. Clin Infect Dis 2018; 65:738-745. [PMID: 28472260 DOI: 10.1093/cid/cix417] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
Background There is marked interest in using DNA-based methods to detect antimicrobial resistance (AMR), with targeted polymerase chain reaction (PCR) approaches increasingly being incorporated into clinical care. Whole-genome sequencing (WGS) could offer significant advantages over targeted PCR for AMR detection, particularly for species where mutations are major drivers of AMR. Methods Illumina MiSeq WGS and broth microdilution (BMD) assays were performed on 90 bloodstream isolates of the 4 most common gram-negative bacteria causing bloodstream infections in neutropenic patients. The WGS data, including both gene presence/absence and detection of mutations in an array of AMR-relevant genes, were used to predict resistance to 4 β-lactams commonly used in the empiric treatment of neutropenic fever. The genotypic predictions were then compared to phenotypic resistance as determined by BMD and by commercial methods during routine patient care. Results Of 133 putative instances of resistance to the β-lactams of interest identified by WGS, only 87 (65%) would have been detected by a typical PCR-based approach. The sensitivity, specificity, and positive and negative predictive values for WGS in predicting AMR were 0.87, 0.98, 0.97, and 0.91, respectively. Using BMD as the gold standard, our genotypic resistance prediction approach had a significantly higher positive predictive value compared to minimum inhibitory concentrations generated by commercial methods (0.97 vs 0.92; P = .025). Conclusions These data demonstrate the potential feasibility of using WGS to guide antibiotic treatment decisions for patients with life-threatening infections for an array of medically important pathogens.
Collapse
Affiliation(s)
- Samuel A Shelburne
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.,Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston
| | - Jiwoong Kim
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas
| | - Jose M Munita
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas McGovern Medical School at Houston.,Genomics and Resistant Microbes Group, Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Pranoti Sahasrabhojane
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Ellen G Press
- Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Xiqi Li
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center
| | - Cesar A Arias
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas McGovern Medical School at Houston.,Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston.,Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas
| | - Ying Jiang
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Min S Kim
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas
| | - Samuel L Aitken
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston.,Division of Pharmacy, MD Anderson Cancer Center, Houston
| | - David E Greenberg
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Microbiology, University of Texas Southwestern, Dallas
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Bloodstream infections are a major cause of hospital and ICU admission with high morbidity and mortality; however, early and targeted antimicrobial therapy reduces mortality in high-risk patients. This article focuses on the diagnosis of bloodstream infections by PCR-based approaches at an early stage to enable prompt treatment and prevent organ dysfunction. RECENT FINDINGS PCR systems offering highly multiplexed targeting of bacterial and/or fungal pathogens (in whole blood) offer the best opportunity for clinical impact, as informed decisions can be made within 4-8 h of the blood draw. Although more rapid, these systems are typically associated with lower sensitivity and specificity than postculture detection methods which rely on microbial growth. Additionally, unlike postculture methods, detection directly from blood is not prone to misleading results because of concurrent (or previous) therapy, which limit clinical relevance. SUMMARY Rapid and accurate identification of the cause of sepsis is essential in improving patient outcomes. Early identification of these pathogens by nucleic acid detection assays directly from blood samples remains key to achieving this, particularly if taken at the time of presentation. Selection of the most suitable PCR system is typically influenced by local epidemiology and by the resources of the testing laboratory.
Collapse
|
39
|
Bzdyl NM, Urosevic N, Payne B, Brockenshire R, McIntyre M, Leung MJ, Weaire-Buchanan G, Geelhoed E, Inglis TJJ. Field trials of blood culture identification FilmArray in regional Australian hospitals. J Med Microbiol 2018. [PMID: 29533172 DOI: 10.1099/jmm.0.000714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose. In this field trial of rapid blood culture identification (BCID), we aimed to determine whether the improved speed and accuracy of specific BCID predicted in our earlier pilot study could be obtained in regional hospitals by deploying a multiplex PCR FilmArray (Biomerieux, France) capability in their laboratories.Methods. We trained local hospital laboratory staff to operate the FilmArray equipment and act on the results. To do this, we integrated the multiplex PCR into the standard laboratory blood culture workflow and reporting procedure.Results. Of 100 positive blood culture episodes, BCID FilmArray results were correct in all 42 significant monobacterial cultures, with a fully predictive identity in 38 (90.5 %) and a partial identity in another four (9.5 %). There was one major error; a false positive Pseudomonas aeruginosa. The minor errors were the detection of one methicillin-resistant Staphylococcus aureus, which proved to be a methicillin-sensitive S. aureus mixed with a methicillin-resistant coagulase-negative staphylococcus, five false negative coagulase-negative staphylococci and one false negative streptococcus species. We found that 41/49 (84 %) clinically significant mono- and polymicrobial culture results were fully predictive of culture-based identification to bacterial species level at a mean of 1.15 days after specimen collection.Conclusions. There was a reduction of 1.21 days in the time taken to produce a definitive BCID compared to the previous year, translating into earlier communication of more specific blood culture results to the treating physician. Reduced time to definitive blood culture results has a direct benefit for isolated Australian communities at great distances from specialist hospital services.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| | - Nadezda Urosevic
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| | - Ben Payne
- PathWest Laboratory Medicine WA, Broome Health Campus, West Kimberley, WA, Australia
| | - Ray Brockenshire
- PathWest Laboratory Medicine WA, Broome Health Campus, West Kimberley, WA, Australia
| | - Michael McIntyre
- PathWest Laboratory Medicine WA, Bunbury Health Campus, Bunbury, WA, Australia
| | - Michael J Leung
- Department of Microbiology, PathWest Laboratory Medicine WA, PP building, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| | - Graham Weaire-Buchanan
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.,Department of Microbiology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Elizabeth Geelhoed
- School of Population Health, Faculty of Health and Medical Sciences, University of Western Australia, Stirling Highway, WA 6009, Australia
| | - Timothy J J Inglis
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, PP building, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.,The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
40
|
Sofjan AK, Casey BO, Xu BA, Amadio J, Restrepo A, Alam MJ, Garey KW. Accelerate PhenoTest TM BC Kit Versus Conventional Methods for Identification and Antimicrobial Susceptibility Testing of Gram-Positive Bloodstream Isolates: Potential Implications for Antimicrobial Stewardship. Ann Pharmacother 2018; 52:754-762. [PMID: 29557208 DOI: 10.1177/1060028018765486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The Accelerate PhenoTestTM BC kit (AXDX) provides rapid organism identification (ID) and antimicrobial susceptibility testing (AST) results. Its potential role for antimicrobial stewardship is unknown. OBJECTIVE To compare the diagnostic accuracy of AXDX with conventional methods (CMs) and assess AXDX's potential role for antimicrobial stewardship in patients with Gram-positive bloodstream infections (BSIs). METHODS This retrospective cohort study included adults with Staphylococcus aureus or Enterococcus spp BSIs from July 2014 to January 2016 at a tertiary care medical center. Available isolates were tested on AXDX, and ID and AST results from AXDX were compared with those from CMs (VITEK 2 or ETEST). The following antibiotics were assessed for categorical agreement (CA) and essential agreement (EA) between the methods: ampicillin and daptomycin ( Enterococcus spp only), erythromycin and cefoxitin ( S aureus only), linezolid, and vancomycin. Potential role of AXDX for stewardship was assessed via a retrospective audit by infectious diseases clinicians. RESULTS We included 231 patients with S aureus (n = 112) or Enterococcus spp (n = 119) BSIs, and 106 unique isolates were available for ID and AST performance analyses. Sensitivity and specificity of AXDX for ID were 98.0% and 99.5%, respectively. CA and EA for the tested antibiotics were >97%. In Monte Carlo simulations, AXDX coupled with stewardship personnel (either 24/7 or Monday to Friday) would have allowed unnecessary therapy to be stopped and active/targeted therapy to be started ≥24 hours sooner in >50% of patients. CONCLUSIONS Compared with CMs, AXDX had similar diagnostic accuracy and can potentially optimize therapy sooner in patients with Gram-positive BSIs.
Collapse
Affiliation(s)
- Amelia K Sofjan
- 1 University of Houston College of Pharmacy, Houston, TX, USA
| | | | - Boxin A Xu
- 1 University of Houston College of Pharmacy, Houston, TX, USA
| | - Jonathan Amadio
- 1 University of Houston College of Pharmacy, Houston, TX, USA
| | | | - M Jahangir Alam
- 1 University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- 1 University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
41
|
Fleece ME, Pholwat S, Mathers AJ, Houpt ER. Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Rev Mol Diagn 2018; 18:207-217. [PMID: 29431523 DOI: 10.1080/14737159.2018.1439381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Antimicrobial resistance is a growing global public health threat. The complexities of antimicrobial resistance in gram-negative bacteria such as Escherichia coli pose significant diagnostic and therapeutic challenges. Molecular diagnostics are emerging in this field. Areas covered: The authors review the clinical importance of pathogenic E. coli and discuss the mechanisms of resistance to common antibiotics used to treat these infections. We review the literature on antimicrobial susceptibility testing and discuss the current state of phenotypic as well as molecular methodologies. Clinical vignettes are presented to highlight how molecular diagnostics may be used for patient care. Expert commentary: The future use of molecular diagnostics for detection of antimicrobial resistance will be tailored to the context, whether hospital epidemiology, infection control, antibiotic stewardship, or clinical care. Further clinical research is needed to understand how to best apply molecular diagnostics to these settings.
Collapse
Affiliation(s)
- Molly E Fleece
- a Division of Infectious Diseases & International Health , University of Virginia , Charlottesville , VA , USA
| | - Suporn Pholwat
- a Division of Infectious Diseases & International Health , University of Virginia , Charlottesville , VA , USA
| | - Amy J Mathers
- a Division of Infectious Diseases & International Health , University of Virginia , Charlottesville , VA , USA
| | - Eric R Houpt
- a Division of Infectious Diseases & International Health , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
42
|
New Technologies for the Diagnosis of Infection. DIAGNOSTIC PATHOLOGY OF INFECTIOUS DISEASE 2018. [PMCID: PMC7152403 DOI: 10.1016/b978-0-323-44585-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Abstract
The recent development of commercial panel-based molecular diagnostics for the rapid detection of pathogens in positive blood culture bottles, respiratory specimens, stool, and cerebrospinal fluid has resulted in a paradigm shift in clinical microbiology and clinical practice. This review focuses on U.S. Food and Drug Administration (FDA)-approved/cleared multiplex molecular panels with more than five targets designed to assist in the diagnosis of bloodstream, respiratory tract, gastrointestinal, or central nervous system infections. While these panel-based assays have the clear advantages of a rapid turnaround time and the detection of a large number of microorganisms and promise to improve health care, they present certain challenges, including cost and the definition of ideal test utilization strategies (i.e., optimal ordering) and test interpretation.
Collapse
|
44
|
Rood IG, Li Q. Review: Molecular detection of extended spectrum-β-lactamase- and carbapenemase-producing Enterobacteriaceae in a clinical setting. Diagn Microbiol Infect Dis 2017; 89:245-250. [DOI: 10.1016/j.diagmicrobio.2017.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 01/10/2023]
|
45
|
Abbott AN, Fang FC. Clinical Impact of Multiplex Syndromic Panels in the Diagnosis of Bloodstream, Gastrointestinal, Respiratory, and Central Nervous System Infections. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.clinmicnews.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Li Y, Yang X, Zhao W. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technol 2017; 22:585-608. [PMID: 28850804 DOI: 10.1177/2472630317727519] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.
Collapse
Affiliation(s)
- Yiyan Li
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,7 Department of Physics and Engineering, Fort Lewis College, Durango, Colorado, USA
| | | | - Weian Zhao
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,6 Department of Biological Chemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
47
|
Powell EA, Haslam D, Mortensen JE. Performance of the check-points check-MDR CT103XL assay utilizing the CDC/FDA antimicrobial resistance isolate bank. Diagn Microbiol Infect Dis 2017; 88:219-221. [DOI: 10.1016/j.diagmicrobio.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023]
|
48
|
Evaluation of the Accelerate Pheno System for Fast Identification and Antimicrobial Susceptibility Testing from Positive Blood Cultures in Bloodstream Infections Caused by Gram-Negative Pathogens. J Clin Microbiol 2017; 55:2116-2126. [PMID: 28446572 DOI: 10.1128/jcm.00181-17] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/20/2017] [Indexed: 01/20/2023] Open
Abstract
Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli (n = 7) and multidrug-resistant Pseudomonas aeruginosa (n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h (P < 0.0001) and for AST by 40.39 h (P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI.
Collapse
|
49
|
Maurer FP, Christner M, Hentschke M, Rohde H. Advances in Rapid Identification and Susceptibility Testing of Bacteria in the Clinical Microbiology Laboratory: Implications for Patient Care and Antimicrobial Stewardship Programs. Infect Dis Rep 2017; 9:6839. [PMID: 28458798 PMCID: PMC5391540 DOI: 10.4081/idr.2017.6839] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Early availability of information on bacterial pathogens and their antimicrobial susceptibility is of key importance for the management of infectious diseases patients. Currently, using traditional approaches, it usually takes at least 48 hours for identification and susceptibility testing of bacterial pathogens. Therefore, the slowness of diagnostic procedures drives prolongation of empiric, potentially inappropriate, antibacterial therapies. Over the last couple of years, the improvement of available techniques (e.g. for susceptibility testing, DNA amplification assays), and introduction of novel technologies (e.g. MALDI-TOF) has fundamentally changed approaches towards pathogen identification and characterization. Importantly, these techniques offer increased diagnostic resolution while at the same time shorten the time-to-result, and are thus of obvious importance for antimicrobial stewardship. In this review, we will discuss recent advances in medical microbiology with special emphasis on the impact of novel techniques on antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Florian P Maurer
- Institute of Medical Microbiology, Virology and Hygiene.,Antibiotic Stewardship Team, University Medical Centre Hamburg-Eppendorf, Hamburg
| | | | | | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene
| |
Collapse
|
50
|
Maurer FP, Hentschke M, Rohde H. [Advances in diagnostic microbiology : Opportunities and limitations]. Med Klin Intensivmed Notfmed 2017; 112:199-205. [PMID: 28342095 DOI: 10.1007/s00063-017-0275-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/04/2023]
Abstract
In the light of ever increasing problems related to the emergence of multidrug-resistant bacteria, rapid microbiological diagnostics are of growing importance. Timely pathogen detection and availability of susceptibility data are essential for optimal treatment, but are even more crucial for de-escalation of broad spectrum empiric therapies. Medical microbiology is, thus, an integral part of antimicrobial stewardship programs. Traditional microbiological techniques for species identification and susceptibility testing rely on bacterial growth and are, thus, characterized by inherent slowness. Time-to-report is usually 48 h or longer, and typically delays optimization of therapeutic regimens. Constant improvement of available techniques (e. g., molecular methods) and introduction of novel methods (e. g., matrix-assisted laser desorption ionization time-of-flight [MALDI-ToF] mass spectrometry) have fundamentally changed diagnostic procedures. As a consequence, sensitivity and specificity as well as time-to-report have been dramatically improved. In this manuscript, key methodological advances in medical microbiology are discussed, emphasizing consequences for daily management of infectious disease patients.
Collapse
Affiliation(s)
- F P Maurer
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.,Antibiotic Stewardship Team, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | - M Hentschke
- MVZ Labor Dr. Fenner und Kollegen, Bergstraße 14, 20095, Hamburg, Deutschland
| | - H Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.
| |
Collapse
|