1
|
Pilliol V, Mahmoud Abdelwadoud B, Aïcha H, Lucille T, Gérard A, Hervé T, Michel D, Ghiles G, Elodie T. Methanobrevibacter oralis: a comprehensive review. J Oral Microbiol 2024; 16:2415734. [PMID: 39502191 PMCID: PMC11536694 DOI: 10.1080/20002297.2024.2415734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Methanobrevibacter oralis (M. oralis) has predominated human oral microbiota methanogenic archaea as far back as the Palaeolithic era in Neanderthal populations and gained dominance from the 18th century onwards. M. oralis was initially isolated from dental plaque samples collected from two apparently healthy individuals allowing its first characterization. The culture of M. oralis is fastidious and has been the subject of several studies to improve its laboratory growth. Various PCR methods are used to identify M. oralis, targeting either the 16S rRNA gene or the mcrA gene. However, only one RTQ-PCR system, based on a chaperonin gene, offers specificity, and allows for microbial load quantification. Next-generation sequencing contributed five draft genomes, each approximately 2.08 Mb (±0.052 Mb) with a 27.82 (±0.104) average GC%, and two ancient metagenomic assembled genomes. M. oralis was then detected in various oral cavity sites in healthy individuals and those diagnosed with oral pathologies, notably periodontal diseases, and endodontic infections. Transmission pathways, possibly involving maternal milk and breastfeeding, remain to be clarified. M. oralis was further detected in brain abscesses and respiratory tract samples, bringing its clinical significance into question. This review summarizes the current knowledge about M. oralis, emphasizing its prevalence, associations with dysbiosis and pathologies in oral and extra-oral situations, and symbiotic relationships, with the aim of paving the way for further investigations.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Boualam Mahmoud Abdelwadoud
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Hamiech Aïcha
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Tellissi Lucille
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Aboudharam Gérard
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Tassery Hervé
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Drancourt Michel
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Grine Ghiles
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Terrer Elodie
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| |
Collapse
|
2
|
Meta-analyses on the Periodontal Archaeome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:69-93. [DOI: 10.1007/978-3-030-96881-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Sogodogo E, Doumbo O, Kouriba B, Aboudharam G. Microbial biodiversity of natural toothbrushes in Mali. New Microbes New Infect 2021; 40:100844. [PMID: 33796319 PMCID: PMC7995651 DOI: 10.1016/j.nmni.2021.100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Different oral hygiene practices are used to overcome endemic diseases such as dental caries and oral infections. In Mali (Africa), natural plant-based toothbrushes are used for eliminating bacterial biofilm. The repertoire of microorganisms associated with natural toothbrushes is unknown. The aim of our study is to study microbial flora in particular the methanogenic archaea associated with natural toothbrushes recently recognized as responsible for periodontitis and peri-implantitis. We investigated the methanogens and bacteria associated with 15 different natural plant toothbrushes collected in Bamako local market (Mali). Microbiological investigations consisted in culturing the bacteria on agar plates and searching archaea using molecular techniques. No archaea were demonstrated by molecular biology but 50 bacterial species, including 33 aero-anaerobic and 17 aerobic species, were isolated from natural toothbrushes. We isolated Pseudomonas sp., Staphylococcus sp. and Klebsiella pneumoniae, which are acknowledged as opportunistic human pathogens. This study has highlighted the likely impact of the use of natural toothbrushes in the spread of potentially pathogenic bacteria in the human oral cavity.
Collapse
Affiliation(s)
- E Sogodogo
- Aix Marseille Université. IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - O Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - B Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.,Centre d'infectiologie Charles-Mérieux (CICM), Bamako, Mali
| | - G Aboudharam
- Aix Marseille Université. IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Université, UFR Odontology, Marseille, France
| |
Collapse
|
4
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Abstract
The Archaea domain was recognized as a separate phylogenetic lineage in the tree of life nearly 3 decades ago. It is now known as part of the human microbiome; however, given that its roles in oral sites are still poorly understood, this review aimed to establish the current level of evidence regarding archaea in the oral cavity to guide future research, providing insights on the present knowledge about the human oral archaeome. A scoping review was conducted with the PRISMA Extension for Scoping Reviews checklist. Five electronic databases were searched, as well as gray literature. Two independent reviewers performed the selection and characterization of the studies. Clinical studies were included when the target population consisted of humans of any age who were donors of samples from the oral cavity. A qualitative analysis was performed, based on the type of oral site and by considering the methods employed for archaeal identification and taxonomy, including the DNA extraction protocols, primers, and probes used. Fifty articles were included in the final scoping review, published from 1987 to 2019. Most studies sampled periodontal sites. Methanogens were the most abundant archaea in those sites, and their presence could be associated with other periodontal pathogens. No consistent relationship with different disease conditions was observed in studies that evaluated the microbiota surviving in endodontic sites. Few articles analyzed the presence of archaea in dental caries, saliva, or tongue microbiota, as well as in archaeologic samples, also showing a relationship with healthy microbiota. Archaea have been detected in different oral niches of individuals from diverse geographic locations and clinical conditions, suggesting potential roles in oral diseases. Methodological limitations may hamper our current knowledge about archaeal diversity and prevalence in oral samples, and future research with diversified methodological approaches may lead to a better comprehension of the human oral archaeome.
Collapse
Affiliation(s)
- A Belmok
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - J A de Cena
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| | - C M Kyaw
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - N Damé-Teixeira
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Sogodogo E, Doumbo O, Aboudharam G, Kouriba B, Diawara O, Koita H, Togora S, Drancourt M. First characterization of methanogens in oral cavity in Malian patients with oral cavity pathologies. BMC Oral Health 2019; 19:232. [PMID: 31666044 PMCID: PMC6820998 DOI: 10.1186/s12903-019-0929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The oral cavity of humans is inhabited by several hundreds of bacterial species and other microorganisms such as fungi and archaeal methanogens. Regarding methanogens, data have been obtained from oral cavity samples collected in Europe, America and Asia. There is no study published on the presence of methanogens in the oral cavity in persons living in Africa. The objective of our study was to bring new knowledge on the distribution of oral methanogens in persons living in Mali, Africa. METHODS A total of 31 patients were included in the study during a 15-day collection period in September. Bacterial investigations consisted in culturing the bacteria in 5% sheep blood-enriched Columbia agar and PolyViteX agar plates. For archaeal research, we used various methods including culture, molecular biology and fluorescent in situ hybridization (FISH). RESULTS Eight of 31 (26%) oral samples collected in eight patients consulting for stomatology diseases tested positive in polymerase chain-reaction (PCR)-based assays for methanogens including five cases of Methanobrevibacter oralis and one case each of Methanobrevibacter smithii, Methanobrevibacter massiliense and co-infection Methanobrevibacter oralis and Methanobrevibacter massiliense. CONCLUSIONS In this pilot study, we are reporting here the first characterization of methanogens in the oral cavity in eight patients in Mali. These methanogen species have already been documented in oral specimens collected from individuals in Europe, Asia, North America and Brazil.
Collapse
Affiliation(s)
- Elisabeth Sogodogo
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, 19-21, Boulevard Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ogobara Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Gérard Aboudharam
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, 19-21, Boulevard Jean Moulin, 13005, Marseille, France.,Aix-Marseille-University, UFR Odontology, Marseille, France
| | - Bourema Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.,Centre d'Infectiologie Charles-Mérieux (CICM), Bamako, Mali
| | - Ousseynou Diawara
- National Center of Odonto Stomatology, Faculty of Medicine and Odonto Stomatology, Bamako, Mali
| | - Hapssa Koita
- National Center of Odonto Stomatology, Faculty of Medicine and Odonto Stomatology, Bamako, Mali
| | - Souleymane Togora
- National Center of Odonto Stomatology, Faculty of Medicine and Odonto Stomatology, Bamako, Mali
| | - Michel Drancourt
- Aix Marseille University, IRD, MEPHI, IHU-Méditerranée Infection, 19-21, Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
7
|
Sogodogo E, Drancourt M, Grine G. Methanogens as emerging pathogens in anaerobic abscesses. Eur J Clin Microbiol Infect Dis 2019; 38:811-818. [DOI: 10.1007/s10096-019-03510-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
|
8
|
Grine G, Terrer E, Boualam MA, Aboudharam G, Chaudet H, Ruimy R, Drancourt M. Tobacco-smoking-related prevalence of methanogens in the oral fluid microbiota. Sci Rep 2018; 8:9197. [PMID: 29907776 PMCID: PMC6003954 DOI: 10.1038/s41598-018-27372-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
The oral fluid microbiome comprises an important bacterial diversity, yet the presence of archaea has not been reported so far. In order to quest for the presence of methanogenic archaea (methanogens) in oral fluid, we used a polyphasic approach including PCR-sequencing detection, microscopic observation by fluorescence in-situ hybridization, isolation and culture, molecular identification and genotyping of methanogens in 200 oral fluid specimens. In the presence of negative controls, 64/200 (32%) prospectively analysed oral fluid specimens were PCR-positive for methanogens, all identified as Methanobrevibacter oralis by sequencing. Further, fluorescence in-situ hybridization detected methanogens in 19/48 (39.6%) investigated specimens; with morphology suggesting M. oralis in 10 cases and co-infecting Methanobrevibacter smithii in nine cases. M. oralis was cultured from 46/64 (71.8%) PCR-positive specimens and none of PCR-negative specimens; and one M. smithii isolate was co-cultured with M. oralis in one specimen. Multispacer Sequence Typing found one M. oralis genotype per specimen and a total of five different genotypes with 19/46 (41%) of isolates all belonging to spacer-type four. Statistical analyses showed a significant correlation between the PCR-detection of methanogens in oral fluid and tobacco smoking. These data indicate that M. oralis and M. smithii are oral fluid-borne methanogens in tobacco smokers. Both methanogens could be transmitted during intimate contacts such as mother-to-child contacts and kissing.
Collapse
Affiliation(s)
- Ghiles Grine
- Aix Marseille Université, MEPHI, IRD, IHU Méditerranée Infection, Marseille, France
| | - Elodie Terrer
- Aix Marseille Université, MEPHI, IRD, IHU Méditerranée Infection, Marseille, France.,Pôle Odontologie, Assistance Publique - Hôpitaux de Marseille, Marseille, France.,Faculté d'odontologie, Université d'Aix Marseille, Marseille, France
| | | | - Gérard Aboudharam
- Aix Marseille Université, MEPHI, IRD, IHU Méditerranée Infection, Marseille, France.,Pôle Odontologie, Assistance Publique - Hôpitaux de Marseille, Marseille, France.,Faculté d'odontologie, Université d'Aix Marseille, Marseille, France
| | - Hervé Chaudet
- Aix Marseille Université, MEPHI, IRD, IHU Méditerranée Infection, Marseille, France
| | - Raymond Ruimy
- Laboratoire de bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet II, Université Côte d'Azur, INSERM U1065, C3M, Team 6, Nice, France
| | - Michel Drancourt
- Aix Marseille Université, MEPHI, IRD, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|