1
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Shahabudin S, Azmi NS, Lani MN, Mukhtar M, Hossain MS. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024; 67:e13753. [PMID: 38877612 DOI: 10.1111/myc.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Candida species, commensal residents of human skin, are recognized as the cause of cutaneous candidiasis across various body surfaces. Individuals with weakened immune systems, particularly those with immunosuppressive conditions, are significantly more susceptible to this infection. Diabetes mellitus, a major metabolic disorder, has emerged as a critical factor inducing immunosuppression, thereby facilitating Candida colonization and subsequent skin infections. This comprehensive review examines the prevalence of different types of Candida albicans-induced cutaneous candidiasis in diabetic patients. It explores the underlying mechanisms of pathogenicity and offers insights into recommended preventive measures and treatment strategies. Diabetes notably increases vulnerability to oral and oesophageal candidiasis. Additionally, it can precipitate vulvovaginal candidiasis in females, Candida balanitis in males, and diaper candidiasis in young children with diabetes. Diabetic individuals may also experience candidal infections on their nails, hands and feet. Notably, diabetes appears to be a risk factor for intertrigo syndrome in obese individuals and periodontal disorders in denture wearers. In conclusion, the intricate relationship between diabetes and cutaneous candidiasis necessitates a comprehensive understanding to strategize effective management planning. Further investigation and interdisciplinary collaborative efforts are crucial to address this multifaceted challenge and uncover novel approaches for the treatment, management and prevention of both health conditions, including the development of safer and more effective antifungal agents.
Collapse
Affiliation(s)
- Sakina Shahabudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| |
Collapse
|
3
|
Martins-Santana L, Rezende CP, Rossi A, Martinez-Rossi NM, Almeida F. Addressing Microbial Resistance Worldwide: Challenges over Controlling Life-Threatening Fungal Infections. Pathogens 2023; 12:pathogens12020293. [PMID: 36839565 PMCID: PMC9961291 DOI: 10.3390/pathogens12020293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Fungal infections are a serious global concern because of their ability to spread and colonize host tissues in immunocompromised individuals. Such infections have been frequently reported worldwide and are currently gaining clinical research relevance owing to their resistant character, representing a bottleneck in treating affected people. Resistant fungi are an emergent public health threat. The upsurge of such pathogens has led to new research toward unraveling the destructive potential evoked by these species. Some fungi-grouped into Candida, Aspergillus, and Cryptococcus-are causative agents of severe and systemic infections. They are associated with high mortality rates and have recently been described as sources of coinfection in COVID-hospitalized patients. Despite the efforts to elucidate the challenges of colonization, dissemination, and infection severity, the immunopathogenesis of fungal diseases remains a pivotal characteristic in fungal burden elimination. The struggle between the host immune system and the physiological strategies of the fungi to maintain cellular viability is complex. In this brief review, we highlight the relevance of drug resistance phenotypes in fungi of clinical significance, taking into consideration their physiopathology and how the scientific community could orchestrate their efforts to avoid fungal infection dissemination and deaths.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- Correspondence:
| |
Collapse
|
4
|
Islam MR, Rahman MM, Ahasan MT, Sarkar N, Akash S, Islam M, Islam F, Aktar MN, Saeed M, Harun-Or-Rashid M, Hosain MK, Rahaman MS, Afroz S, Bibi S, Rahman MH, Sweilam SH. The impact of mucormycosis (black fungus) on SARS-CoV-2-infected patients: at a glance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69341-69366. [PMID: 35986111 PMCID: PMC9391068 DOI: 10.1007/s11356-022-22204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus (mucormycosis). As a result, millions of lives have already been lost. As a result of the mutation, the virus is constantly changing its traits, including the rate of disease transmission, virulence, pathogenesis, and clinical signs. A recent analysis revealed that some COVID-19 patients were also coinfected with a fungal disease called mucormycosis (black fungus). India has already categorized the COVID-19 patient black fungus outbreak as an epidemic. Only a few reports are observed in other countries. The immune system is weakened by COVID-19 medication, rendering it more prone to illnesses like black fungus (mucormycosis). COVID-19, which is caused by a B.1.617 strain of the SARS-CoV-2 virus, has been circulating in India since April 2021. Mucormycosis is a rare fungal infection induced by exposure to a fungus called mucormycete. The most typically implicated genera are Mucor rhyzuprhizopusdia and Cunninghamella. Mucormycosis is also known as zygomycosis. The main causes of infection are soil, dumping sites, ancient building walls, and other sources of infection (reservoir words "mucormycosis" and "zygomycosis" are occasionally interchanged). Zygomycota, on the other hand, has been identified as polyphyletic and is not currently included in fungal classification systems; also, zygomycosis includes Entomophthorales, but mucormycosis does not. This current review will be focused on the etiology and virulence factors of COVID-19/mucormycosis coinfections in COVID-19-associated mucormycosis patients, as well as their prevalence, diagnosis, and treatment.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Tanjimul Ahasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Kawsar Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Sadia Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 China
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213 Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426 Korea
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829 Egypt
| |
Collapse
|
5
|
Antifungal susceptibilities of opportunistic filamentous fungal pathogens from the Asia and Western Pacific Region: data from the SENTRY Antifungal Surveillance Program (2011-2019). J Antibiot (Tokyo) 2021; 74:519-527. [PMID: 34188199 PMCID: PMC8241534 DOI: 10.1038/s41429-021-00431-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Antifungal surveillance is an important tool to monitor the prevalence of uncommon fungal species and increasing antifungal resistance throughout the world, but data comparing results across several different Asian countries are scarce. In this study, 372 invasive molds collected in the Asia-Western Pacific region in 2011-2019 were susceptibility tested for mold-active triazoles (isavuconazole, posaconazole, voriconazole, and itraconazole). The collection includes 318 Aspergillus spp. isolates and 53 non-Aspergillus molds. The MIC values using CLSI methods for isavuconazole versus Aspergillus fumigatus ranged from 0.25 to 2 mg l-1. Isavuconazole, itraconazole, posaconazole, and voriconazole acted similarly against A. fumigatus. The mold-active triazoles exhibited a wildtype phenotype to most of the Aspergillus spp. isolates tested (>94%), but poor activity against Fusarium solani species complex and Lomentospora prolificans. Voriconazole was most active against the Scedosporium spp. and posaconazole was most active against the Mucorales. In summary, isavuconazole displayed excellent activity against most species of Aspergillus and was comparable to other mold-active triazoles against non-Aspergillus molds.
Collapse
|
6
|
Jung IY, Lee YJ, Shim HS, Cho YS, Sohn YJ, Hyun JH, Baek YJ, Kim MH, Kim JH, Ahn JY, Jeong SJ, Ku NS, Park YS, Yeom JS, Kim YK, Kim HY, Choi JY. Identification of Fungal Species and Detection of Azole-Resistance Mutations in the Aspergillus fumigatus cyp51A Gene at a South Korean Hospital. Yonsei Med J 2020; 61:698-704. [PMID: 32734733 PMCID: PMC7393294 DOI: 10.3349/ymj.2020.61.8.698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE With changing fungal epidemiology and azole resistance in Aspergillus species, identifying fungal species and susceptibility patterns is crucial to the management of aspergillosis and mucormycosis. The objectives of this study were to evaluate performance of panfungal polymerase chain reaction (PCR) assays on formalin-fixed paraffin embedded (FFPE) samples in the identification of fungal species and in the detection of azole-resistance mutations in the Aspergillus fumigatus cyp51A gene at a South Korean hospital. MATERIALS AND METHODS A total of 75 FFPE specimens with a histopathological diagnosis of aspergillosis or mucormycosis were identified during the 10-year study period (2006-2015). After deparaffinization and DNA extraction, panfungal PCR assays were conducted on FFPE samples for fungal species identification. The identified fungal species were compared with histopathological diagnosis. On samples identified as A. fumigatus, sequencing to identify frequent mutations in the cyp51A gene [tandem repeat 46 (TR46), L98H, and M220 alterations] that confer azole resistance was performed. RESULTS Specific fungal DNA was identified in 31 (41.3%) FFPE samples, and of these, 16 samples of specific fungal DNA were in accord with a histopathological diagnosis of aspergillosis or mucormycosis; 15 samples had discordant histopathology and PCR results. No azole-mediating cyp51A gene mutation was noted among nine cases of aspergillosis. Moreover, no cyp51A mutations were identified among three cases with history of prior azole use. CONCLUSION Panfungal PCR assay with FFPE samples may provide additional information of use to fungal species identification. No azole-resistance mediating mutations in the A. fumigatus cyp51A gene were identified among FFPE samples during study period.
Collapse
Affiliation(s)
- In Young Jung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Youn Jung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Suk Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jin Sohn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hoon Hyun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Jee Baek
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Moo Hyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyo Youl Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Detecting Green Mold Pathogens on Lemons Using Hyperspectral Images. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyperspectral images in the spectral wavelength range of 500 nm to 650 nm are used to detect green mold pathogens, which are parasitic on the surface of lemons. The images reveal that the spectral range of 500 nm to 560 nm is appropriate for detecting the early stage of development of the pathogen in the lemon, because the spectral intensity is proportional to the infection degree. Within the range, it was found that the dominant spectral wavelengths of the fresh lemon and the green mold pathogen are 580 nm and 550 nm, respectively, with the 550 nm being the most sensitive in detecting the pathogen with spectral imaging. The spectral intensity ratio of the infected lemon to the fresh one in the spectral range of 500 nm to 560 nm increases with the increasing degree of the infection. Therefore, the ratio can be used to effectively estimate the degree of lemons infecting by the green mold pathogens. It also shows that the sudden decrease of the spectral intensity corresponding to the dominant spectral wavelength of the fresh lemon, together with the neighboring spectral wavelengths can be used to classify fresh and contaminated lemons. The spectral intensity ratio of discriminating the fresh lemon from the infected one is calculated as 1.15.
Collapse
|
8
|
del Rocío Reyes-Montes M, Duarte-Escalante E, Guadalupe Frías-De-León M, Obed Martínez-Herrera E, Acosta-Altamirano G. Molecular Diagnosis of Invasive Aspergillosis. Mol Med 2019. [DOI: 10.5772/intechopen.78694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
9
|
Changes in the utilization patterns of antifungal agents, medical cost and clinical outcomes of candidemia from the health-care benefit expansion to include newer antifungal agents. Int J Infect Dis 2019; 83:49-55. [PMID: 30959246 DOI: 10.1016/j.ijid.2019.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/11/2019] [Accepted: 03/31/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES In 2014, South Korea expanded its national health insurance coverage to include newer antifungal agents, such as echinocandins. This study aimed to investigate the effects of policy change on the prescription patterns of antifungals, medical costs and clinical outcomes of candidemia. METHODS This retrospective cohort enrolled hospitalized patients with candidemia at three tertiary care hospitals in South Korea from January 2012 to December 2015. The utilization of antifungal agents, medical costs, length of hospital stay (LOS), and mortality before and after the health-care benefit expansion were compared, and the factors associated with all-cause 28-day mortality during the study period were analyzed. RESULTS A total of 769 candidemia cases were identified. The incidence of candidemia did not significantly vary during the study period (P = 0.253). The proportion of echinocandins, as the initial antifungal agent, and medical costs associated with candidemia significantly increased since the change in insurance coverage (P < 0.001). There was no significant difference in LOS and mortality associated with candidemia before and after the health-care benefit expansion (P = 0.696 and 0.931, respectively). Multivariate logistic regression analysis showed that initial treatment with caspofungin was associated with decreased mortality (adjusted odds ratio: 0.784; 95% confidence interval: 0.681-0.902; reference: fluconazole). CONCLUSIONS Although the utilization of newer antifungal agents and medical cost for candidemia has significantly increased since the health-care benefit expansion, there has been no change in the outcome of candidemia. However, the further increased use of newer antifungals may improve the outcome of candidemia in this country.
Collapse
|
10
|
Tsai WC, Lien CY, Lee JJ, Hsiao WC, Huang CR, Tsai NW, Chang CC, Lu CH, Chang WN. The clinical characteristics and therapeutic outcomes of cryptococcal meningitis in elderly patients: a hospital-based study. BMC Geriatr 2019; 19:91. [PMID: 30909914 PMCID: PMC6434878 DOI: 10.1186/s12877-019-1108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The elderly, and especially those with an immuno-compromised status, are vulnerable to infectious diseases. The purpose of this study was to examine the clinical characteristics and therapeutic outcomes of cryptococcal meningitis (CM) in elderly patients in Taiwan. METHODS Ninety-nine adult patients with CM were identified during a 15-year study period (2002-2016), of whom 38 elderly (≥ 65 years) patients (16 men and 22 women, median age 72.9 years; range 65-86 years) were included for analysis. The clinical characteristics and therapeutic outcomes of these patients were analyzed and compared to non-elderly adult patients (< 65 years) with CM. RESULTS Among the 38 patients, diabetes mellitus was the most common underlying condition (15), followed by adrenal insufficiency (7), malignancy (6), hematologic disorders (5), chronic obstructive pulmonary disease (5), autoimmune diseases (3), liver cirrhosis (3) and acquired immunodeficiency syndrome (1). Altered consciousness (29), fever (21) and headache (17) were the leading clinical manifestations. Positive cerebrospinal fluid and blood cultures for Cryptococcus (C.) neoformans were found in 26 and 9 patients, respectively. There were significant differences in gender, altered consciousness and recent cerebral infarction between the elderly and non-elderly groups. The elderly group had a high mortality rate (36.8%, 14/38), and the presence of cryptococcemia was the most significant prognostic factor. CONCLUSIONS This study offers a preliminary view of the clinical characteristics of CM in the elderly. The results suggest that elderly patients (≥ 65 years) are more vulnerable to CM than adults aged < 65 years. Compared to the non-elderly group, the elderly group had female predominance, higher rates of altered consciousness and recent cerebral infarction as the clinical presentation. The presence of cryptococcemia was a significant prognostic factor in the elderly group. This study is limited by the small number of patients, and further large-scale studies are needed to better delineate this specific infectious syndrome.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Chia-Yi Lien
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Jun-Jun Lee
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
- Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Chiu Hsiao
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Global Epidemiology of Mucormycosis. J Fungi (Basel) 2019; 5:jof5010026. [PMID: 30901907 PMCID: PMC6462913 DOI: 10.3390/jof5010026] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an angio-invasive fungal infection, associated with high morbidity and mortality. A change in the epidemiology of mucormycosis has been observed in recent years with the rise in incidence, new causative agents and susceptible population. The rise has been perceived globally, but it is very high in the Asian continent. Though diabetes mellitus overshadow all other risk factors in Asia, post-tuberculosis and chronic renal failure have emerged as new risk groups. The rhino-cerebral form of mucormycosis is most commonly seen in patients with diabetes mellitus, whereas, pulmonary mucormycosis in patients with haematological malignancy and transplant recipients. In immunocompetent hosts, cutaneous mucormycosis is commonly seen following trauma. The intriguing clinical entity, isolated renal mucormycosis in immunocompetent patients is only reported from China and India. A new clinical entity, indolent mucormycosis in nasal sinuses, is recently recognized. The causative agents of mucormycosis vary across different geographic locations. Though Rhizopusarrhizus is the most common agent isolated worldwide, Apophysomycesvariabilis is predominant in Asia and Lichtheimia species in Europe. The new causative agents, Rhizopus homothallicus, Mucor irregularis, and Thamnostylum lucknowense are reported from Asia. In conclusion, with the change in epidemiology of mucormycosis country-wise studies are warranted to estimate disease burden in different risk groups, analyse the clinical disease pattern and identify the new etiological agents.
Collapse
|
12
|
Barac A, Kosmidis C, Alastruey-Izquierdo A, Salzer HJF. Chronic pulmonary aspergillosis update: A year in review. Med Mycol 2019; 57:S104-S109. [DOI: 10.1093/mmy/myy070] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Aleksandra Barac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Chris Kosmidis
- National Aspergillosis Centre, Manchester University NHS Foundation Trust, UK and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Helmut J F Salzer
- Department of Pulmonary Medicine, Kepler University Hospital, Linz, Austria
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Linz, Austria
| | | |
Collapse
|
13
|
Bongomin F, Gago S, Oladele RO, Denning DW. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J Fungi (Basel) 2017; 3:E57. [PMID: 29371573 PMCID: PMC5753159 DOI: 10.3390/jof3040057] [Citation(s) in RCA: 1538] [Impact Index Per Article: 192.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Fungal diseases kill more than 1.5 million and affect over a billion people. However, they are still a neglected topic by public health authorities even though most deaths from fungal diseases are avoidable. Serious fungal infections occur as a consequence of other health problems including asthma, AIDS, cancer, organ transplantation and corticosteroid therapies. Early accurate diagnosis allows prompt antifungal therapy; however this is often delayed or unavailable leading to death, serious chronic illness or blindness. Recent global estimates have found 3,000,000 cases of chronic pulmonary aspergillosis, ~223,100 cases of cryptococcal meningitis complicating HIV/AIDS, ~700,000 cases of invasive candidiasis, ~500,000 cases of Pneumocystis jirovecii pneumonia, ~250,000 cases of invasive aspergillosis, ~100,000 cases of disseminated histoplasmosis, over 10,000,000 cases of fungal asthma and ~1,000,000 cases of fungal keratitis occur annually. Since 2013, the Leading International Fungal Education (LIFE) portal has facilitated the estimation of the burden of serious fungal infections country by country for over 5.7 billion people (>80% of the world's population). These studies have shown differences in the global burden between countries, within regions of the same country and between at risk populations. Here we interrogate the accuracy of these fungal infection burden estimates in the 43 published papers within the LIFE initiative.
Collapse
Affiliation(s)
- Felix Bongomin
- The National Aspergillosis Center, Education and Research Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
- Global Action Fund for Fungal Infections, 1211 Geneva 1, Switzerland.
| | - Sara Gago
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
- Global Action Fund for Fungal Infections, 1211 Geneva 1, Switzerland.
- Manchester Fungal Infection Group, Core Technology Facility, The University of Manchester, Manchester M13, 9PL, UK.
| | - Rita O Oladele
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
- Global Action Fund for Fungal Infections, 1211 Geneva 1, Switzerland.
| | - David W Denning
- The National Aspergillosis Center, Education and Research Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
- Global Action Fund for Fungal Infections, 1211 Geneva 1, Switzerland.
- Manchester Fungal Infection Group, Core Technology Facility, The University of Manchester, Manchester M13, 9PL, UK.
| |
Collapse
|