1
|
Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Boredetella pertussis as a Vaccine Candidate. IRANIAN BIOMEDICAL JOURNAL 2021; 25:399-407. [PMID: 34719226 PMCID: PMC8744696 DOI: 10.52547/ibj.25.6.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Pertussis is a current contagious bacterial disease caused by Bp. Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (PTX, PRN, and FHA) from Bp predominant strains and also compare the expression of these factors in the OMVs obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.
Collapse
|
2
|
Saedi S, Safarchi A, Moghadam FT, Heidarzadeh S, Nikbin VS, Shahcheraghi F. Fha Deficient Bordetella pertussis Isolates in Iran with 50 Years Whole Cell Pertussis Vaccination. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1454-1462. [PMID: 34568185 PMCID: PMC8426785 DOI: 10.18502/ijph.v50i7.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
Background: Bordetella pertussis, a highly contagious respiratory. Notably, the resurgence of pertussis has recently been associated with the lacking production of vaccine virulence factors. This study aimed to screen pertactin (Prn) and filamentous hemagglutinin (Fha) production in Iran with 50 years’ whole cell vaccine (WCV) immunization program. Methods: Overall, 130 B. pertussis isolates collected from Pertussis Reference Laboratory of Iran during 2005–2018. Real-time PCR was performed by targeting IS481, ptxP, IS1001 and IS1002 for species confirmation of B. pertussis. Western-blot was used to evaluate the expression of virulence factors (pertactin and filamentous hemagglutinin). Results: All tested B. pertussis isolates expressed Prn and all except two isolates expressed Fha. We have sequenced genomes of these strains and identified differences compared with genome reference B. pertussis Tohama I. Conclusion: Many countries reporting Prn and Fha-deficiency due to acellular vaccine (ACV) pressure. Our results demonstrate in a country with WCV history, Fha-deficient isolates may rise independently. However, Prn-deficient isolates are more under the ACV pressure in B. pertussis isolates. Continues surveillance will provide a better understanding of the effect of WCV on the evolution of the pathogen deficiency.
Collapse
Affiliation(s)
- Samaneh Saedi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Safarchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Noel G, Badmasti F, Nikbin VS, Zahraei SM, Madec Y, Tavel D, Aït-Ahmed M, Guiso N, Shahcheraghi F, Taieb F. Transversal sero-epidemiological study of Bordetella pertussis in Tehran, Iran. PLoS One 2020; 15:e0238398. [PMID: 32870922 PMCID: PMC7462262 DOI: 10.1371/journal.pone.0238398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/15/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives Pertussis remains endemic despite high vaccine coverage in infants and toddlers. Pertussis vaccines confer protection but immunity wanes overtime and boosters are needed in a lifetime. Iran, eligible for the Expanded Program on Immunization that includes the primary immunization, implemented two additional booster doses using a whole-cell vaccine (wPV) at 18 months-old and about 6 years-old. Duration of protection induced by the wPVs currently in use and their impact as pre-school booster are not well documented. This study aimed at assessing vaccination compliance and at estimating the duration of protection conferred by vaccination with wPV in children aged < 15 years in Tehran, Iran. Methods Detailed information on vaccination history and capillary blood samples were obtained from 1047 children aged 3–15 years who completed the 3 doses-primary pertussis immunization, in Tehran. Anti-pertussis toxin IgG levels were quantified by ELISA. Results Compliance was very high with 93.3% of children who received the three primary and 1st booster doses in a timely manner. Timeliness of the 2nd booster was lower (63.3%). Rate of seropositive samples continuously and significantly increased from 1–2 to 5–6 years after 1st booster attaining 30.4% of children exhibiting serological sign of recent contact with B. pertussis. Second booster dating back 1 or 2 years was associated with high antibody titers, which significantly decreased within 3 years from injection. Among children who received 2nd booster injection more than 2 years before serum analysis, seroprevalence of pertussis infection was 8.4% and seropositivity rate was higher from the 10 years-old group. Conclusion Seropositivity in children aged 6–7 years with no 2nd booster supports the need for a vaccination at that age. Adolescent booster may also be considered.
Collapse
Affiliation(s)
- Gaelle Noel
- Institut Pasteur, Center for Translational Research, Paris, France
| | - Farzad Badmasti
- Department of Bacteriology, Pertussis Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Vajihe S. Nikbin
- Department of Bacteriology, Pertussis Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed M. Zahraei
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Yoann Madec
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - David Tavel
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - Mohand Aït-Ahmed
- Institut Pasteur, Centre for Translational Science, Clinical Coordination, Paris, France
| | - Nicole Guiso
- Institut Pasteur, Center for Translational Research, Paris, France
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Pertussis Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fabien Taieb
- Institut Pasteur, Center for Translational Research, Paris, France
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
- * E-mail:
| |
Collapse
|
4
|
Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerg Microbes Infect 2020; 8:1416-1427. [PMID: 31543006 PMCID: PMC6764348 DOI: 10.1080/22221751.2019.1665479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran.,School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Masoumeh Nakhost Lotfi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Seyed Mohsen Zahraei
- Centre for Communicable Disease Control, Ministry of Health and Medical Education , Tehran , Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| |
Collapse
|
5
|
Nikbin VS, Keramati M, Noofeli M, Tayebzadeh F, Kahali B, Shahcheraghi F. Engineering of an Iranian Bordetella pertussis strain producing inactive pertussis toxin. J Med Microbiol 2019; 69:111-119. [PMID: 31778110 DOI: 10.1099/jmm.0.001114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Differences between the genomic and virulence profile of Bordetella pertussis circulating strains and vaccine strains are considered as one of the important reasons for the resurgence of whooping cough (pertussis) in the world. Genetically inactivated B. pertussis is one of the new strategies to generate live-attenuated vaccines against whooping cough.Aim. The aim of this study was to construct a B. pertussis strain based on a predominant profile of circulating Iranian isolates that produces inactivated pertussis toxin (PTX).Methodology. The B. pertussis strain BPIP91 with predominant genomic and virulence pattern was selected from the biobank of the Pasteur Institute of Iran. A BPIP91 derivative with R9K and E129G alterations in the S1 subunit of PTX (S1mBPIP91) was constructed by the site-directed mutagenesis and homologous recombination. Genetic stability and antigen expression of S1mBPIP91 were tested by serially in vitro passages and immunoblot analyses, respectively. The reduction in toxicity of S1mBPIP91 was determined by Chinese hamster ovary (CHO) cell clustering.Results. All constructs and S1mBPIP91 were confirmed via restriction enzyme analysis and DNA sequencing. The engineered mutations in S1mBPIP91 were stable after 20 serial in vitro passages. The production of virulence factors was also confirmed in S1mBPIP91. The CHO cell-clustering test demonstrated the reduction in PTX toxicity in S1mBPIP91.Conclusion. A B. pertussis of the predominant genomic and virulence lineage in Iran was successfully engineered to produce inactive PTX. This attenuated strain will be useful to further studies to develop both whole cell and acellular pertussis vaccines.
Collapse
Affiliation(s)
- Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Noofeli
- Razi Vaccines and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Faranak Tayebzadeh
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bahram Kahali
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Bacteriology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Molecular Epidemiology of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:19-33. [PMID: 31342459 DOI: 10.1007/5584_2019_402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although vaccination has been effective, Bordetella pertussis is increasingly causing epidemics, especially in industrialized countries using acellular vaccines (aPs). One factor behind the increased circulation is the molecular changes on the pathogen level. After pertussis vaccinations were introduced, changes in the fimbrial (Fim) serotype of the circulating strains was observed. When bacterial typing methods improved, further changes between the vaccine and circulating strains, especially among the common virulence genes including pertussis toxin (PT) and pertactin (PRN) were noticed. Moreover, development of genome based techniques including pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA) and whole-genome sequencing (WGS) have offered a better resolution to monitor B. pertussis strains. After the introduction of aP vaccines, B. pertussis strains that are deficient to vaccine antigens, especially PRN, have appeared widely. On the other hand, antimicrobial resistance to first line drugs (macrolides) against B. pertussis is still low in many countries and therefore no globally evaluated antimicrobial susceptibility test values have been recommended. In this review, we focus on the molecular changes in the bacteria, which have or may have affected the past and current epidemiology of pertussis.
Collapse
|