1
|
Sazykin I, Litsevich A, Khmelevtsova L, Azhogina T, Klimova M, Karchava S, Khammami M, Chernyshenko E, Naumova E, Sazykina M. Expression of Rhodococcus erythropolis stress genes in planctonic culture supplemented with various hydrocabons. Microbiol Res 2024; 289:127920. [PMID: 39357231 DOI: 10.1016/j.micres.2024.127920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Studying Rhodococcus erythropolis stress response is of significant scientific interest, since this microorganism is widely used for bioremediation of oil-contaminated sites and is essential for environmental biotechnology. In addition, much less data was published on molecular mechanisms of stress resistance and adaptation to effects of pollutants for Gram-positive oil degraders compared to Gram-negative ones. This study provided an assessment of changes in the transcription level of the soxR, sodA, sodC, oxyR, katE, katG, recA, dinB, sigF, sigH genes in the presence of decane, hexadecane, cyclohexane, benzene, naphthalene, anthracene and diesel fuel. Judging by the changes in the expression of target genes, hydrocarbons as the main carbon source caused oxidative stress in R. erythropolis cells, which resulted in DNA damage. It was documented by enhanced transcription of genes encoding antioxidant enzymes (superoxide dismutase and catalase), SOS response, DNA polymerase IV, and sigma factors of RNA polymerase SigH and SigF. At this, it was likely that in the presence of hydrocarbons, transcription of catalase genes (katE and katG) was coordinated primarily by the sigF regulator.
Collapse
Affiliation(s)
- Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Alla Litsevich
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | | | - Tatiana Azhogina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Maria Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Shorena Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Elena Chernyshenko
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Ekaterina Naumova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia
| | - Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russia.
| |
Collapse
|
2
|
Sterner RM, Schuetz AN, Larson JM, Zomok CD, Thangaiah JJ. Disseminated Rhodococcus equi infection in a patient with diffuse large B-cell lymphoma treated with immunotherapy. IDCases 2024; 36:e01972. [PMID: 38711945 PMCID: PMC11070911 DOI: 10.1016/j.idcr.2024.e01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Immunotherapies can lead to an immune compromised state that can allow for opportunistic pathogens such as Rhodococcus to flourish. The vast majority of Rhodococcus infections occur in immunocompromised hosts. Here we describe disseminated Rhodococcus equi infection in a patient with diffuse large B-cell lymphoma treated with immunotherapy. Infection with Rhodococcus can be diagnosed with the aid of cytomorphology and histochemical findings and the organism confirmed by sequencing. In conclusion, Rhodococcus should be considered in the differential of granulomatous inflammation in immunocompromised individuals treated with immunotherapies.
Collapse
Affiliation(s)
- Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Audrey N. Schuetz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer M. Larson
- Department of Medicine and Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Catherine D. Zomok
- Department of Medicine and Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
3
|
Xiao Y, Sheng ZM, Williams SL, Taubenberger JK. Two complete 1918 influenza A/H1N1 pandemic virus genomes characterized by next-generation sequencing using RNA isolated from formalin-fixed, paraffin-embedded autopsy lung tissue samples along with evidence of secondary bacterial co-infection. mBio 2024; 15:e0321823. [PMID: 38349163 PMCID: PMC10936189 DOI: 10.1128/mbio.03218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The 1918 influenza pandemic was the most devastating respiratory pandemic in modern human history, with 50-100 million deaths worldwide. Here, we characterized the complete genomes of influenza A virus (IAV) from two fatal cases during the fall wave of 1918 influenza A (H1N1) pandemic in the United States, one from Walter Reed Army Hospital in Washington, DC, and the other from Camp Jackson, SC. The two complete IAV genomes were obtained by combining Illumina deep sequencing data from both total RNA and influenza viral genome-enriched libraries along with Sanger sequencing data from PCR across the sequencing gaps. This study confirms the previously reported 1918 IAV genomes and increases the total number of available complete or near-complete influenza viral genomes of the 1918 pandemic from four to six. Sequence comparisons among them confirm that the genomes of the 1918 pandemic virus were highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases. Interestingly, in the Washington, DC, case, evidence is presented of the first reported Rhodococcus-influenza virus co-infection. IMPORTANCE This study applied modern molecular biotechnology and high-throughput sequencing to formalin-fixed, paraffin-embedded autopsy lung samples from two fatal cases during the fall wave of the 1918 influenza A (H1N1) pandemic in the United States. Complete influenza genomes were obtained from both cases, which increases the total number of available complete or near-complete influenza genomes of the 1918 pandemic virus from four to six. Sequence analysis confirms that the 1918 pandemic virus was highly conserved during the main wave of the pandemic with geographic separation in North America and Europe. Metagenomic analyses revealed bacterial co-infections in both cases, including the first reported evidence of Rhodococcus-influenza co-infection. Overall, this study offers a detailed view at the molecular level of the very limited samples from the most devastating influenza pandemic in modern human history.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Li X, Yi S, Chen L, Hafeez M, Zhang Z, Zhang J, Zhou S, Dong W, Huang J, Lu Y. The application of entomopathogenic nematode modified microbial communities within nesting mounds of the red imported fire ants, Solenopsis invicta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168748. [PMID: 38008315 DOI: 10.1016/j.scitotenv.2023.168748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Entomopathogenic microorganisms (e.g., fungi, bacteria, nematodes) have been widely used in biological control of soil-dwelling pests, including the red imported fire ant (RIFA), Solenopsis invicta, a notorious invasive pest worldwide. The application of large amounts of entomopathogenic microorganisms to soil may affect the indigenous soil microbial communities. However, reports about the effect of entomopathogenic nematodes (EPN) on soil microbial communities are very few. In this study, the effects of EPN on RIFA populations and microbial communities in mounds were investigated. Our results showed that the application of the EPN Steinernema carpocapsae. All strain on mounds efficaciously suppressed RIFA worker populations, without forming significantly more satellite mounds compared with the control treatment. The application of EPN did not impact the bacterial and fungal diversity in soils derived from the RIFA mounds. However, it slightly altered the taxonomic make-up of the bacterial communities, but significantly altered the taxonomic composition of fungal communities at the phylum, family, and genus levels. The abundances of some beneficial bacteria and fungi, such as Streptomyces, decreased, while those of plant and animal pathogenic bacteria and fungi, dramatically increased, after EPN treatment. On the other hand, the abundances of some entomopathogenic fungi, such as Fusicolla, Clonostachys, and Mortierella, increased. Redundancy analysis or canonical correspondence analysis revealed a positive correlation between the efficacious EPN control and the presence of the insect-resistant bacteria, Sinomonas, as well as entomopathogenic fungi Fusicolla and Mortierella. This suggests that the interactions between EPN and entomopathogenic fungi may play a role in the biological control of RIFA. Our discoveries shed light on the interactions among EPN, RIFA, and soil microbial communities, and emphasize a possible mutualistic relationship between EPN and entomopathogenic fungi in the biological control of RIFA.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Songwang Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanying Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Bio-Interaction, Xianghu Laboratory, Hangzhou 311258, China.
| |
Collapse
|
5
|
Alkhalifa W, Ali BA, AlDandan H, Aljehani H, Alwazzeh M, Diab A. Rhodococcus equi bacteremia with necrotizing pneumonia and brain abscess in a newly diagnosed HIV patient in Saudi Arabia: A case report and review of literature. Heliyon 2023; 9:e21953. [PMID: 38034617 PMCID: PMC10682116 DOI: 10.1016/j.heliyon.2023.e21953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Rhodococcus equi is a Gram-positive coccobacillus that falls within the category of aerobic actinomycetes. The Rhodococcus genus belongs to the nocardioform bacteria group. This microorganism has been found in various settings, including natural environments, animals, and particularly in individuals with compromised immune systems, such as those living with HIV. Notably, there is an increasing number of reports concerning R. equi infections in transplant recipients and even individuals with a normally functioning immune system. Traditionally, R. equi has been primarily associated with pulmonary infections, but there is a growing body of evidence documenting its involvement in extrapulmonary infections. In this report, we present a case involving a newly diagnosed HIV patient who experienced R. equi -induced necrotizing pneumonia, bacteremia, and a brain abscess in newly diagnosed HIV patient. It is important to note that a direct Gram stain may potentially lead to misclassification of such microorganisms as contaminants. Microbiologists should therefore prioritize the careful examination of colony morphology, biochemical reactions, and consider the limitations of automated machine databases. Furthermore, they should correlate their identification findings with clinical data to ensure optimal patient care and management, especially in the context of an immunocompromised state.
Collapse
Affiliation(s)
- Wala Alkhalifa
- Department of Microbiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Batool Abu Ali
- Department of Internal Medicine, King Fahad Hospital, Al Hofuf, Infectious Disease Division, Al Hofuf, Saudi Arabia
| | - Hassan AlDandan
- Department of Intensive Care Unit, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Hosam Aljehani
- Department of Intensive Care Unit, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Marwan Alwazzeh
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Asim Diab
- Department of Microbiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| |
Collapse
|
6
|
Yin J, Li D, Zheng T, Hu B, Wang P. Gastrointestinal Degradation and Toxicity of Disinfection Byproducts in Drinking Water Using In Vitro Models and the Roles of Gut Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16219-16231. [PMID: 37847491 DOI: 10.1021/acs.est.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.
Collapse
Affiliation(s)
- Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| |
Collapse
|
7
|
Molina-Menor E, Carlotto N, Vidal-Verdú À, Pérez-Ferriols A, Pérez-Pastor G, Porcar M. Ecology and resistance to UV light and antibiotics of microbial communities on UV cabins in the dermatology service of a Spanish hospital. Sci Rep 2023; 13:14547. [PMID: 37666842 PMCID: PMC10477284 DOI: 10.1038/s41598-023-40996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023] Open
Abstract
Microorganisms colonize all possible ecological habitats, including those subjected to harsh stressors such as UV radiation. Hospitals, in particular the UV cabins used in phototherapy units, constitute an environment in which microbes are intermittently subjected to UV irradiation. This selective pressure, in addition to the frequent use of antibiotics by patients, may represent a threat in the context of the increasing problem of antimicrobial resistance. In this work, a collection of microorganisms has been established in order to study the microbiota associated to the inner and outer surfaces of UV cabins and to assess their resistance to UV light and the antibiotics frequently used in the Dermatology Service of a Spanish hospital. Our results show that UV cabins harbor a relatively diverse biocenosis dominated by typically UV-resistant microorganisms commonly found in sun-irradiated environments, such as Kocuria, Micrococcus or Deinococcus spp., but also clinically relevant taxa, such as Staphylococcus or Pseudomonas spp. The UV-radiation assays revealed that, although some isolates displayed some resistance, UV is not a major factor shaping the biocenosis living on the cabins, since a similar pool of resistant microorganisms was identified on the external surface of the cabins. Interestingly, some Staphylococcus spp. displayed resistance to one or more antibiotics, although the hospital reported no cases of antibiotic-resistance infections of the patients using the cabins. Finally, no association between UV and antibiotic resistances was found.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Nicolás Carlotto
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | | | - Gemma Pérez-Pastor
- Servicio de Dermatología, Consorcio Hospital General de Valencia, Valencia, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain.
- Darwin Bioprospecting Excellence SL (Parc Científic Universitat de València, C/ Catedràtic Agustín Escardino Benlloch 9, Paterna, Spain.
| |
Collapse
|
8
|
Saleem M, Maqsood M, Iftikhar H, Haria D, Arif H. Peritoneal Dialysis-Related Recurrent Rhodococcus corynebacterioides Peritonitis: A Case Report and Review of Literature. Cureus 2023; 15:e43423. [PMID: 37706134 PMCID: PMC10497068 DOI: 10.7759/cureus.43423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 09/15/2023] Open
Abstract
Rhodococcus corynebacterioides is a Gram-positive bacterium known to cause bacteremia and oligoarthritis. There have been only a few case reports in the literature that describe its association with peritoneal dialysis (PD)-related peritonitis. We report a case of recurrent peritonitis caused by R. corynebacterioides. The patient presented with abdominal pain, and PD fluid analysis was positive for infection, with cultures growing R. corynebacterioides. The patient was treated with multiple courses of intraperitoneal antibiotics due to recurrent episodes of PD-associated peritonitis from this bacterium, ultimately necessitating the removal of the PD catheter and the transition to hemodialysis.
Collapse
Affiliation(s)
- Maryam Saleem
- Nephrology, Ohio Valley Nephrology Associates, Owensboro, USA
- Nephrology, Washington University School of Medicine, St. Louis, USA
- Internal Medicine, Waterbury Hospital, Waterbury, USA
| | - Maryam Maqsood
- Internal Medicine, Mayo Hospital, Lahore, PAK
- Internal Medicine, King Edward Medical University, Lahore, PAK
| | - Hassaan Iftikhar
- Nephrology, Ohio Valley Nephrology Associates, Owensboro, USA
- Nephrology, Washington University School of Medicine, St. Louis, USA
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| | - Dhiren Haria
- Nephrology, Ohio Valley Nephrology Associates, Owensboro, USA
| | - Hamza Arif
- Nephrology, Ohio Valley Nephrology Associates, Owensboro, USA
| |
Collapse
|
9
|
Livieri AL, Colaccini F, Hernández MA, Gago G, Alvarez HM, Gramajo H, Rodriguez E. Genetic analysis of acyl-CoA carboxylases involved in lipid accumulation in Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12674-2. [PMID: 37439834 DOI: 10.1007/s00253-023-12674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
In actinomycetes, the acyl-CoA carboxylases, including the so-called acetyl-CoA carboxylases (ACCs), are biotin-dependent enzymes that exhibit broad substrate specificity and diverse domain and subunit arrangements. Bioinformatic analyses of the Rhodococcus jostii RHA1 genome found that this microorganism contains a vast arrange of putative acyl-CoA carboxylases domains and subunits. From the thirteen putative carboxyltransferase domains, only the carboxyltransferase subunit RO01202 and the carboxyltransferase domain present in the multidomain protein RO04222 are highly similar to well-known essential ACC subunits from other actinobacteria. Mutant strains in each of these genes showed that none of these enzymes is essential for R. jostii growth in rich or in minimal media with high nitrogen concentration, presumably because of their partial overlapping activities. A mutant strain in the ro04222 gene showed a decrease in triacylglycerol and mycolic acids accumulation in rich and minimal medium, highlighting the relevance of this multidomain ACC in the biosynthesis of these lipids. On the other hand, RO01202, a carboxyltransferase domain of a putative ACC complex, whose biotin carboxylase and biotin carboxyl carrier protein domain were not yet identified, was found to be essential for R. jostii growth only in minimal medium with low nitrogen concentration. The results of this study have identified a new component of the TAG-accumulating machinery in the oleaginous R. jostii RHA1. While non-essential for growth and TAG biosynthesis in RHA1, the activity of RO04222 significantly contributes to lipogenesis during single-cell oil production. Furthermore, this study highlights the high functional diversity of ACCs in actinobacteria, particularly regarding their essentiality under different environmental conditions. KEY POINTS: • R. jostii possess a remarkable heterogeneity in their acyl-carboxylase complexes. • RO04222 is a multidomain acetyl-CoA carboxylase involved in lipid accumulation. • RO01202 is an essential carboxyltransferase only at low nitrogen conditions.
Collapse
Affiliation(s)
- Andrea L Livieri
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Facundo Colaccini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martin A Hernández
- Instituto de Biociencias de La Patagonia, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco y CONICET, Comodoro Rivadavia, Argentina
| | - Gabriela Gago
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor M Alvarez
- Instituto de Biociencias de La Patagonia, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco y CONICET, Comodoro Rivadavia, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Eduardo Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
10
|
Khan RA, Devi KR, Pratim Barman M, Bhagawati M, Sarmah R. Bacteria in the oral cavity of individuals consuming intoxicating substances. PLoS One 2023; 18:e0285753. [PMID: 37235563 DOI: 10.1371/journal.pone.0285753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Food habits and oral hygiene are critical attributes for physiochemical environment of the oral cavity. Consumption of intoxicating substances such as betel nut ('Tamul'), alcohol, smoking and chewing tobacco may strongly influence the oral ecosystem including commensal microbes. Therefore, a comparative assessment of microbes in the oral cavity between individuals consuming intoxicating substances and non-consumers may indicate the influence of these substances. Oral swabs were collected from consumers of intoxicating substances and non- consumers of Assam, India, microbes were isolated by culturing on Nutrient agar and identified by phylogenetic analysis of their 16S rRNA gene sequences. The risks of consumption of intoxicating substance on occurrence of microbes and health conditions were estimated using binary logistic regression. Mostly pathogens and opportunistic pathogens were found in the oral cavity of consumers and oral cancer patients which included Pseudomonas aeruginosa, Serratia marcescens, Rhodococcus antrifimi, Paenibacillus dendritiformis, Bacillus cereus, Staphylococcus carnosus, Klebsiella michiganensis and Pseudomonas cedrina. Enterobacter hormaechei was found in the oral cavity of cancer patients but not in other cases. Pseudomonas sp. were found to be widely distributed. The risk of occurrence of these organisms were found in between 0.01 and 2.963 odds and health conditions between 0.088 and 10.148 odds on exposure to different intoxicating substances. When exposed to microbes, the risk of varying health conditions ranged between 0.108 and 2.306 odds. Chewing tobacco showed a higher risk for oral cancer (10.148 odds). Prolonged exposure to intoxicating substances conduce a favorable environment for the pathogens and opportunistic pathogens to colonize in the oral cavity of individuals consuming intoxicating substances.
Collapse
Affiliation(s)
- Reyaz Ahmad Khan
- Department of Microbiology, Faculty of Science, Assam Down Town University, Guwahati, Assam, India
| | - Kangjam Rekha Devi
- Regional Medical Research Centre-Indian Council of Medical Research, Dibrugarh, Assam, India
| | | | - Madhusmita Bhagawati
- Department of Microbiology, Shrimanta Shankardeva University of Health Science, Guwahati, Assam, India
| | - Rajeev Sarmah
- Department Biotechnology, Faculty of Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
11
|
Wang Y, He Y, Liang Y, Liu H, Chen X, Kulyar MFEA, Shahzad A, Wei K, Li K. Fecal microbiota transplantation attenuates Escherichia coli infected outgrowth by modulating the intestinal microbiome. Microb Cell Fact 2023; 22:30. [PMID: 36803386 PMCID: PMC9936653 DOI: 10.1186/s12934-023-02027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Given the crucial role of gut microbiota in animal and human health, studies on modulating the intestinal microbiome for therapeutic purposes have grasped a significant attention, of which the role of fecal microbiota transplantation (FMT) has been emphasized. METHODS In the current study, we evaluated the effect of FMT on gut functions in Escherichia coli (E. coli) infection by using mice model. Moreover, we also investigated the subsequently dependent variables of infection, i.e., body weight, mortality, intestinal histopathology, and the expression changes in tight junction proteins (TJPs). RESULTS The FMT effectively decreased weight loss and mortality to a certain extent with the restoration of intestinal villi that resulted in high histological scores for jejunum tissue damage (p < 0.05). The effect of FMT on alleviating the reduction of intestinal TJPs was also proved by immunohistochemistry analysis and mRNA expression levels. Moreover, the abundance of health-threatening bacteria, belonging to phylum Proteobacteria, family Enterobacteriaceae and Tannerellaceae, genus Escherichia-Shigella, Sphingomonas, Collinsella, etc., were significantly increased, whereas beneficial bacteria, belonging to phylum Firmicutes, family Lactobacillaceae, genus Lactobacillus were decreased in the gut of infected mice. Furthermore, we sought to investigate the association of clinical symptoms with FMT treatment with modulation in gut microbiota. According to beta diversity, the microbial community of gut microbiota results reflected the similarities between non-infected and FMT groups. The improvement of the intestinal microbiota in FMT group was characterized by the significant high level of beneficial microorganisms with the synergistic decrease of Escherichia-Shigella, Acinetobacter, and other taxa. CONCLUSION The findings suggest a beneficial host-microbiome correlation following fecal microbiota transplanatation for controlling gut infections and pathogens-associated diseases.
Collapse
Affiliation(s)
- Yaping Wang
- grid.27871.3b0000 0000 9750 7019Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yuanyuan He
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Han Liu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Xiushuang Chen
- grid.27871.3b0000 0000 9750 7019Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Fakhar-e-Alam Kulyar
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Asim Shahzad
- grid.412496.c0000 0004 0636 6599Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
12
|
Tanaka Y, Hirai D, Kawai Y, Ueda N, Takaori K, Koizumi M, Seta K. Peritoneal dialysis-related peritonitis caused by Rhodococcus corynebacterioides. CEN Case Rep 2023; 12:68-72. [PMID: 35877040 PMCID: PMC9892398 DOI: 10.1007/s13730-022-00718-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
A 57-year-old Japanese man on peritoneal dialysis developed peritoneal dialysis-associated peritonitis caused by Rhodococcus corynebacterioides. After the introduction of peritoneal dialysis, he had experienced four episodes of peritonitis, but the causative organism was not identified in any of episode. When he was hospitalized for the fifth episode of peritonitis, Rhodococcus corynebacterioides was detected in the ascitic fluid. He improved after an intraperitoneal administration of vancomycin (VCM) that was used based on the treatment of peritonitis caused by Corynebacterium spp. However, he then had repeated flare-ups and eventually required the removal of the peritoneal dialysis catheter due to recurrent peritonitis. 16S rRNA gene sequencing is generally needed to positively identify Rhodococcus corynebacterioides. In this case, we were able to rapidly identify the organism by using mass spectrometry and then apply this knowledge to the patient's treatment. To the best of our knowledge, this is the first reported case of peritoneal dialysis-associated peritonitis caused by Rhodococcus corynebacterioides.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Daisuke Hirai
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| | - Yuriko Kawai
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Naoko Ueda
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Koji Takaori
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Mitsuteru Koizumi
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Koichi Seta
- Department of Nephrology, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| |
Collapse
|
13
|
Méndez-Cruz AR, Félix-Bermúdez GE, Aguilar-Escobar DV, Vega-Vega L, Morales-Estrada AI, Contreras-Rodríguez A. Bloodstream infection by Rhodococcus corynebacterioides in a pediatric patient diagnosed with high-risk retinoblastoma. Rev Argent Microbiol 2023; 55:68-72. [PMID: 35988003 DOI: 10.1016/j.ram.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus is a pathogen that is known to cause infections in animals and humans, mainly in cases of immunocompromised patients. A case of a pediatric cancer patient suffering from a bloodstream infection caused by Rhodococcus corynebacterioides was described in this work. Gram positive rods were isolated from blood cultures. The target bacterium was identified using a combination of biochemical tests, the MALDI-TOF mass spectrometry technique, and the analysis of the 16S rRNA sequence. Moreover, an antimicrobial susceptibility test was performed using the E-test. The isolated bacterium was identified as R. corynebacterioides. The 3-year-old patient was successfully treated with vancomycin and meropenem. This is the first published report of R. corynebacterioides in a pediatric patient diagnosed with retinoblastoma that developed a bloodstream infection. R. corynebacterioides should be considered among the opportunistic infectious agents affecting pediatric cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
14
|
Zampolli J, Orro A, Vezzini D, Di Gennaro P. Genome-Based Exploration of Rhodococcus Species for Plastic-Degrading Genetic Determinants Using Bioinformatic Analysis. Microorganisms 2022; 10:1846. [PMID: 36144448 PMCID: PMC9506104 DOI: 10.3390/microorganisms10091846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Plastic polymer waste management is an increasingly prevalent issue. In this paper, Rhodococcus genomes were explored to predict new plastic-degrading enzymes based on recently discovered biodegrading enzymes for diverse plastic polymers. Bioinformatics prediction analyses were conducted using 124 gene products deriving from diverse microorganisms retrieved from databases, literature data, omic-approaches, and functional analyses. The whole results showed the plastic-degrading potential of Rhodococcus genus. Among the species with high plastic-degrading potential, R. erythropolis, R. equi, R. opacus, R. qingshengii, R. fascians, and R. rhodochrous appeared to be the most promising for possible plastic removal. A high number of genetic determinants related to polyester biodegradation were obtained from different Rhodococcus species. However, score calculation demonstrated that Rhodococcus species (especially R. pyridinivorans, R. qingshengii, and R. hoagii) likely possess PE-degrading enzymes. The results identified diverse oxidative systems, including multicopper oxidases, alkane monooxygenases, cytochrome P450 hydroxylases, para-nitrobenzylesterase, and carboxylesterase, and they could be promising reference sequences for the biodegradation of plastics with C-C backbone, plastics with heteroatoms in the main chain, and polyesters, respectively. Notably, the results of this study could be further exploited for biotechnological applications in biodegradative processes using diverse Rhodococcus strains and through catalytic reactions.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, CNR, Via Fratelli Cervi 19, 20133 Segrate, Italy
| | - Daniele Vezzini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
15
|
Piselli C, Benier L, Koy C, Glocker MO, Benz R. Cell wall channels of Rhodococcus species: identification and characterization of the cell wall channels of Rhodococcus corynebacteroides and Rhodococcus ruber. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:309-323. [PMID: 35567623 PMCID: PMC9233653 DOI: 10.1007/s00249-022-01599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
Abstract
The cell wall of Rhodococcus corynebacteroides formerly known as Nocardia corynebacteroides contains cell wall channels that are responsible for the cell wall permeability of this bacterium. Based on partial sequencing of the polypeptide subunits and a BLAST search, we identified one polypeptide of R. corynebacteroides (PorARc) and two polypeptides (PorARr and PorBRr) from the closely related bacterium Rhodococcus ruber. The corresponding genes, porARc (606 bp), porARr (702 bp), and porBRr (540 bp) are constituents of the known genome of R. corynebacteroides DSM-20151 and R. ruber DSM-43338, respectively. porARr and porBRr of R. ruber are possibly forming a common operon coding for the polypeptide subunits of the cell wall channel. The genes coding for PorARc and for PorARr and PorBRr without signal peptide were separately expressed in the porin-deficient Escherichia coli BL21DE3Omp8 strain and the proteins were purified to homogeneity. All proteins were checked for channel formation in lipid bilayers. PorARc formed channels with characteristics that were very similar to those of a previous study. The proteins PorARr and PorBRr expressed in E. coli could alone create channels in lipid bilayer membranes, despite the possibility that the two corresponding genes form a porin operon and that both subunits possibly form the cell wall channels in vivo. Based on amino acid sequence comparison of a variety of proteins forming cell wall channels in bacteria of the suborder Corynebacterineae, it seems very likely that PorARc, PorARr, and PorBRr are members of a huge family of proteins (PF09203) that form MspA-like cell wall channels.
Collapse
Affiliation(s)
- Claudio Piselli
- Jacobs University Bremen, Campusring 1, 28759, Bremen, Germany
| | - Lorraine Benier
- Jacobs University Bremen, Campusring 1, 28759, Bremen, Germany
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock, 18059, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock, 18059, Rostock, Germany
| | - Roland Benz
- Jacobs University Bremen, Campusring 1, 28759, Bremen, Germany.
| |
Collapse
|
16
|
Shu Y, Jiang H, Yuen CNT, Wang W, He J, Zhang H, Liu G, Wei L, Chen L, Wu H. Microcystin-leucine arginine induces skin barrier damage and reduces resistance to pathogenic bacteria in Lithobates catesbeianus tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113584. [PMID: 35512477 DOI: 10.1016/j.ecoenv.2022.113584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Despite the importance of the skin mucosal barrier and commensal microbiota for the health of amphibians, the potential of environmental contaminants to disrupt the skin mucosal barrier and microbiota have rarely been studied in toxicology. In this study, tadpoles (Lithobates catesbeianus) were exposed to 0, 0.5, and 2 μg/L of microcystin-leucine arginine (MC-LR) for 30 days to explore the impacts of environmentally realistic MC-LR concentrations on the physical skin barrier, immune barrier, commensal microbiota, and skin resistance to pathogenic bacterial invasion. MC-LR exposure significantly reduced the collagen fibrils in the dermis of skin tissues and down-regulated tight junction and stratum corneum-related gene transcriptions, suggesting the damage caused by MC-LR to the physical barrier of the skin. Increased skin eosinophils and upregulated transcriptions of inflammation-related genes in the exposed tadpoles underline the development of skin inflammation resulting from MC-LR exposure even at environmentally realistic concentrations. Comparative transcriptome and immunobiochemical analyses found that antimicrobial peptides (Brevinin-1PLc, Brevinin-2GHc, and Ranatuerin-2PLa) and lysozyme were down-regulated in the exposed groups, while complement, pattern recognition receptor, and specific immune processes were up-regulated. However, the content of endotoxin lipopolysaccharide produced by bacteria increased in a dose-dependent pattern. The disc diffusion test showed a reduced ability of skin supernatant to inhibit pathogenic bacteria in the exposed groups. Analysis of microbial 16 S rRNA gene by high-throughput sequencing revealed that MC-LR interfered with the abundance, composition, and diversity of the skin commensal microbiota, which favored the growth of pathogen-containing genera Rhodococcus, Acinetobacter, and Gordonibacter. In summary, the current study provides the first clues about the impact of MC-LR on the integrity and function of skin barrier of amphibians. These new toxicological evidences can facilitate a more comprehensive evaluation of the ecological risk of MC-LR to amphibians.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Calista N T Yuen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Department of Chemistry, Hong Kong, China
| | - Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guangxuan Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Luting Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
17
|
Chen Y, Huang Y, Ding X, Yang Z, He L, Ning M, Yang Z, He D, Yang L, Liu Z, Chen Y, Li G. A Multi-Omics Study of Familial Lung Cancer: Microbiome and Host Gene Expression Patterns. Front Immunol 2022; 13:827953. [PMID: 35479075 PMCID: PMC9037597 DOI: 10.3389/fimmu.2022.827953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology. The lung microbiome is getting rising attention in carcinogenesis. The present work sought to investigate the microbiome in lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution (IAP); and further, to compare host gene expression patterns with their microbiome for potential links. Methods Tissue sample pairs (cancer and adjacent nonmalignant tissue) were used for 16S rRNA (microbiome) and RNA-seq (host gene expression). Subgroup microbiome diversities and their matched gene expression patterns were analyzed. Significantly enriched taxa were screened out, based on different clinicopathologic characteristics. Results Our FLC microbiome seemed to be smaller, low-diversity, and inactive to change; we noted microbiome differences in gender, age, blood type, anatomy site, histology type, TNM stage as well as IAP and smoking conditions. We also found smoking and IAP dramatically decreased specific-OTU biodiversity, especially in normal lung tissue. Intriguingly, enriched microbes were in three categories: opportunistic pathogens, probiotics, and pollutant-detoxication microbes; this third category involved Sphingomonas, Sphingopyxis, etc. which help degrade pollutants, but may also cause epithelial damage and chronic inflammation. RNA-seq highlighted IL17, Ras, MAPK, and Notch pathways, which are associated with carcinogenesis and compromised immune system. Conclusions The lung microbiome can play vital roles in carcinogenesis. FLC and IAP subjects were affected by fragile lung epithelium, vulnerable host-microbes equilibrium, and dysregulated immune surveillance and response. Our findings provided useful information to study the triple interplay among environmental carcinogens, population genetic background, and diversified lung microbiome.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xiaojie Ding
- The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zhenlin Yang
- National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang He
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zhenghong Yang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | | | | | - Yan Chen
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Guangjian Li
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| |
Collapse
|
18
|
Li HP, Gan YN, Yue LJ, Han QQ, Chen J, Liu QM, Zhao Q, Zhang JL. Newly Isolated Paenibacillus monticola sp. nov., a Novel Plant Growth-Promoting Rhizobacteria Strain From High-Altitude Spruce Forests in the Qilian Mountains, China. Front Microbiol 2022; 13:833313. [PMID: 35250949 PMCID: PMC8895201 DOI: 10.3389/fmicb.2022.833313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Species in the genus Paenibacillus from special habitats have attracted great attention due to their plant growth-promoting traits. A novel plant growth-promoting rhizobacteria (PGPR) species in the genus Paenibacillus was isolated from spruce forest at the height of 3,150 m in the Qilian Mountains, Gansu province, China. The phylogenetic analysis based on 16S rRNA, rpoB, and nifH gene sequences demonstrated that strain LC-T2T was affiliated in the genus Paenibacillus and exhibited the highest sequence similarity with Paenibacillus donghaensis KCTC 13049T (97.4%). Average nucleotide identity (ANIb and ANIm) and digital DNA–DNA hybridization (dDDH) between strain LC-T2T and P. donghaensis KCTC 13049T were 72.6, 83.3, and 21.2%, respectively, indicating their genetic differences at the species level. These differences were further verified by polar lipids profiles, major fatty acid contents, and several distinct physiological characteristics. Meanwhile, the draft genome analysis provided insight into the genetic features to support its plant-associated lifestyle and habitat adaptation. Subsequently, the effects of volatile organic compound (VOC) emitted from strain LC-T2T on the growth of Arabidopsis were evaluated. Application of strain LC-T2T significantly improved root surface area, root projection area, and root fork numbers by 158.3, 158.3, and 241.2%, respectively, compared to control. Also, the effects of LC-T2T on the growth of white clover (Trifolium repens L.) were further assessed by pot experiment. Application of LC-T2T also significantly improved the growth of white clover with root fresh weight increased over three-folds compared to control. Furthermore, the viable bacterial genera of rhizosphere soil were detected in each treatment. The number of genera from LC-T2T-inoculated rhizosphere soil was 1.7-fold higher than that of control, and some isolates were similar to strain LC-T2T, indicating that LC-T2T inoculation was effective in the rhizosphere soil of white clover. Overall, strain LC-T2T should be attributed to a novel PGPR species within the genus Paenibacillus based on phylogenetic relatedness, genotypic features, and phenotypic and inoculation experiment, for which the name Paenibacillus monticola sp. nov. is proposed.
Collapse
Affiliation(s)
- Hui-Ping Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Ya-Nan Gan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Li-Jun Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Qing-Qing Han
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Jia Chen
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Qiong-Mei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Qi Zhao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- *Correspondence: Qi Zhao,
| | - Jin-Lin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Jin-Lin Zhang,
| |
Collapse
|
19
|
Mezzasoma A, Coleine C, Sannino C, Selbmann L. Endolithic Bacterial Diversity in Lichen-Dominated Communities Is Shaped by Sun Exposure in McMurdo Dry Valleys, Antarctica. MICROBIAL ECOLOGY 2022; 83:328-339. [PMID: 34081148 PMCID: PMC8891110 DOI: 10.1007/s00248-021-01769-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The diversity and composition of endolithic bacterial diversity of several locations in McMurdo Dry Valleys (Continental Antarctica) were explored using amplicon sequencing, targeting the V3 and V4 of the 16S region. Despite the increasing interest in edaphic factors that drive bacterial community composition in Antarctic rocky communities, few researchers focused attention on the direct effects of sun exposure on bacterial diversity; we herein reported significant differences in the northern and southern communities. The analysis of β-diversity showed significant differences among sampled localities. For instance, the most abundant genera found in the north-exposed rocks were Rhodococcus and Blastococcus in Knobhead Mt.; Ktedonobacter and Cyanobacteria Family I Group I in Finger Mt.; Rhodococcus and Endobacter in University Valley; and Segetibacter and Tetrasphaera in Siegfried Peak samples. In south-exposed rocks, instead, the most abundant genera were Escherichia/Shigella and Streptococcus in Knobhead Mt.; Ktedonobacter and Rhodococcus in Finger Mt.; Ktedonobacter and Roseomonas in University Valley; and Blastocatella, Cyanobacteria Family I Group I and Segetibacter in Siegfried Peak. Significant biomarkers, detected by the Linear discriminant analysis Effect Size, were also found among north- and south-exposed communities. Besides, the large number of positive significant co-occurrences may suggest a crucial role of positive associations over competitions under the harsher conditions where these rock-inhabiting microorganisms spread. Although the effect of geographic distances in these extreme environments play a significant role in shaping biodiversity, the study of an edaphic factor, such as solar exposure, adds an important contribution to the mosaic of microbial biodiversity of Antarctic bacterial cryptoendolithic communities.
Collapse
Affiliation(s)
- Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
20
|
Complete Genome Sequence of Rhodococcus sp. Strain W8901, a Human Clinical Specimen, Assembled Using MiSeq and MinION Sequence Data. Microbiol Resour Announc 2021; 10:e0061321. [PMID: 34472975 PMCID: PMC8411916 DOI: 10.1128/mra.00613-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus sp. strain W8901 is a Gram-positive, aerobic, mycolic acid-containing coccobacillus obtained from a patient with acute lymphocytic leukemia. Here, we report on the complete, circular genome sequence obtained using Illumina MiSeq and Oxford Nanopore Technologies MinION reads in order to better resolve the phylogeny of a rare pathogen.
Collapse
|
21
|
Suzuki Y, Kubota H, Madarame H, Takase F, Takahashi K, Sasaki Y, Kakuda T, Takai S. Pathogenicity and genomic features of vapN-harboring Rhodococcus equi isolated from human patients. Int J Med Microbiol 2021; 311:151519. [PMID: 34280738 DOI: 10.1016/j.ijmm.2021.151519] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Rhodococcus equi is a saprophytic soil bacterium and intracellular pathogen that causes refractory suppurative pneumonia in foals and has emerged as a pathogenic cause of zoonotic disease. Several studies have reported human infections caused by R. equi harboring a recently described third type of virulence plasmid, the ruminant-associated pVAPN, which carries the vapN virulence determinant. Herein, we analyzed pathogenicity and genomic features of nine vapN-harboring R. equi isolated from human patients with and without HIV/AIDS. Four of these strains showed significant VapN production and proliferation in cultured macrophages. These strains were lethally pathogenic after inoculation with 1.0 × 108 CFU in mice and reproduced a necrotizing granulomatous inflammation in the liver and spleen similar to that observed in humans. Additionally, we determined entire genome sequences of all nine strains. Lengths of sequences were 5.0-5.3 Mbp, and GC contents were 68.7 %-68.8 %. All strains harbored a 120- or 125-kbp linear plasmid carrying vapN (Type I or Type II pVAPN) classified on the basis of differences in the distal sequences on the 3' side. Interestingly, VapN production differed significantly among strains harboring nearly identical types of pVAPN with variation limited to several SNPs and short base pair indels. The pVAPN sequences possessed by the VapN-producing strains did not retain any common genetic characteristics, and more detailed analyses, including chromosomal genes, are needed to further elucidate the VapN expression mechanism.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hiroo Madarame
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Kanagawa, Japan
| | - Fumiaki Takase
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Kei Takahashi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| |
Collapse
|
22
|
Kang Y, Chen Y, Zhang Z, Shen H, Zhou W, Wu C. A case of peritoneal dialysis-associated peritonitis caused by Rhodococcus kroppenstedtii. BMC Infect Dis 2021; 21:565. [PMID: 34120601 PMCID: PMC8201711 DOI: 10.1186/s12879-021-06280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhodococcus kroppenstedtii is an aerobic, gram-positive bacterium firstly identified in the environment, which has not been reported in human-related infection. Herein, we reported the first case of peritoneal dialysis (PD)-associated peritonitis caused by R. kroppenstedtii which was identified by whole genome sequencing. CASE PRESENTATION A 69-year-old man was admitted to hospital with abdominal pain and fever. Over the last 2 years, he had been undergoing continuous ambulatory peritoneal dialysis (CAPD) due to end-stage renal disease. Clinical symptom and sign in combination with laboratory examinations supported the clinical diagnosis of PD-associated peritonitis. Thus, ceftizoxime and teicoplanin were empirically used after PD effluent was collected for bacterial culture. A gram-positive bacterium was found from the PD effluent culture, which could not be identified by either Vitek 2 Compact ANC card or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The strain was finally confirmed to be R. kroppenstedtii by whole genome sequencing (WGS) through the average nucleotide identity (ANI) analysis. With a continuous treatment with teicoplanin and imipenem for 15 days and intraperitoneal catheter removed, the infection symptom was improved evidenced by a normal body temperature, also with white blood cell count (WBC), procalcitonin (PCT) and C-reactive protein (CRP) dropped to normal levels. Peritoneal dialysis effluent culture showed a negative result. Then, hemodialysis and arteriovenous fistula angioplasty were performed, but the patient developed a progressive blood pressure loss, accompanied by multiple organ disorder, and died on Feb 25, 2020. CONCLUSIONS To the best of our knowledge, this is the first time to report a peritoneal dialysis-associated peritonitis caused by R. kroppenstedtii which was identified by average nucleotide identity analysis based on WGS.
Collapse
Affiliation(s)
- Yi Kang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321# Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, P. R. China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Zhifeng Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China.
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321# Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, 210008, P. R. China.
| |
Collapse
|
23
|
Yang Y, Chen T, Zhang X, Wang X. Age-related functional changes of intestinal flora in rats. FEMS Microbiol Lett 2021; 368:6277806. [PMID: 34003293 DOI: 10.1093/femsle/fnab051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Intestinal flora structure and function change with age and have been associated with a variety of aging-related diseases. Until now, how age affects the functions of gut bacteria has not been fully understood. We used 16S-rRNA-sequencing technology and PICRUSt2 analysis to predict the functions encoded by intestinal flora in male Wistar rats across lifespan. We found that the abundance of gut microbiota genes encoding the L-tryptophan, L-histidine, L-leucine, inositol and catechol degradation pathways as well as L-arginine, ectoine, flavin and ubiquinol synthesis pathways increased with age. Differential analysis of the associated genera revealed that Rhodococcus spp. were significantly abundant during middle-old aged stage. This genus contributed greatly to the L-tryptophan, catechol and inositol degradation pathways as well as ectoine and L-arginine biosynthesis pathways. We concluded that gut bacteria-encoded functions such as amino acid metabolism, B vitamin metabolism, aromatic compound metabolism and energy metabolism varied in an age-dependent manner, and Rhodococcus spp. were the most associated functional bacteria in middle-old aged rats. These may be closely associated with the physiological phenotype of the aging process, which offers new insights for evaluating the relationship between intestinal flora and aging.
Collapse
Affiliation(s)
- Yuping Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xia Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Santoro D, Archer L, Fagman L. Intradermal immunotherapy with actinomycetales preparations as treatment for feline atopic syndrome: a randomized, placebo-controlled, double-blinded study. Vet Dermatol 2021; 32:638-e170. [PMID: 33890342 DOI: 10.1111/vde.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Feline atopic syndrome (FAS) is a common disease. Single intradermal injections of heat-killed actinomycetales have shown beneficial effects in canine allergies. HYPOTHESIS/OBJECTIVE To evaluate the clinical effects of heat-killed actinomycetales [Gordonia bronchialis (GB) and Rodococcus coprophilus (RC)], alone or in combination, in FAS. METHODS AND MATERIALS Privately owned cats with a diagnosis of FAS were assigned randomly in three treatment groups (GB, RC and GB/RC combination) or placebo. Five intradermal injections were performed over a one year period. At each visit [Day (D)0, D20, D40, D60, D90, D180 and D365], clinical signs, global owner assessment score, use of rescue medications, clinical adverse effects, skin hydration and cutaneous pH were assessed. RESULTS Seventeen cats were enrolled. When compared to the placebo group and improvement in treatment GB was sustained from D90. When compared with D0 significant improvement in the GB group was seen from D60. Over one year, a complete remission of the clinical signs was seen in 30-67% of cats in the treatment groups. A reduction in the pruritus score was seen for RC after 365 days of treatment (P = 0.04). Differences in the other variables were not seen. CONCLUSIONS AND CLINICAL IMPORTANCE The use of multiple intradermal injections of heat-killed GB shows promise as effective and well-tolerated treatment for FAS. Because of the low cost and the lack of adverse effects, GB could be a beneficial treatment option for FAS. A larger study is needed to confirm these data and to evaluate the immunological changes occurring in the treated cats.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Linda Archer
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Lana Fagman
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| |
Collapse
|
25
|
Fatahi-Bafghi M. Role of Williamsia and Segniliparus in human infections with the approach taxonomy, cultivation, and identification methods. Ann Clin Microbiol Antimicrob 2021; 20:10. [PMID: 33485346 PMCID: PMC7825236 DOI: 10.1186/s12941-021-00416-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/12/2021] [Indexed: 02/01/2023] Open
Abstract
The genera Williamsia and Segniliparus are of aerobic actinomycetes and at the time of writing, they have 12 and 2 species, respectively. These genera cause various infections in humans. In this review, we surveyed their taxonomy, isolation, identification, as well as their role to cause human infections.
Collapse
Affiliation(s)
- Mehdi Fatahi-Bafghi
- Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
26
|
Genome-Based Insights into the Production of Carotenoids by Antarctic Bacteria, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. Molecules 2020; 25:molecules25194357. [PMID: 32977394 PMCID: PMC7582328 DOI: 10.3390/molecules25194357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Antarctic regions are characterized by low temperatures and strong UV radiation. This harsh environment is inhabited by psychrophilic and psychrotolerant organisms, which have developed several adaptive features. In this study, we analyzed two Antarctic bacterial strains, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. The physiological analysis of these strains revealed their potential to produce various biotechnologically valuable secondary metabolites, including surfactants, siderophores, and orange pigments. The genomic characterization of ANT_H30 and ANT_H53B allowed the identification of genes responsible for the production of carotenoids and the in silico reconstruction of the pigment biosynthesis pathways. The complex manual annotation of the bacterial genomes revealed the metabolic potential to degrade a wide variety of compounds, including xenobiotics and waste materials. Carotenoids produced by these bacteria were analyzed chromatographically, and we proved their activity as scavengers of free radicals. The quantity of crude carotenoid extracts produced at two temperatures using various media was also determined. This was a step toward the optimization of carotenoid production by Antarctic bacteria on a larger scale.
Collapse
|
27
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
28
|
Rahdar HA, Salehi MR, Bahador A, Jasemi S, Karami-Zarandi M, Nejad MH, Shahraki-Zahedani S, Amani J, Feyisa SG, Kardan-Yamchi J, Feizabadi MM. Detection of Nocardia, Streptomyces and Rhodococcus from bronchoalveolar lavage specimens of patients with HIV by Multiplex PCR Assay. Ethiop J Health Sci 2020; 29:737-744. [PMID: 31741644 PMCID: PMC6842716 DOI: 10.4314/ejhs.v29i6.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Nocardia, Streptomyces and Rhodococcus are life threatening opportunistic pathogens under immunodeficiency conditions, particularly among patients infected with HIV. Rapid and accurate detection of these infections can improve immune health quality, patient management and appropriate treatment. The aim of this study was to design a novel multiplex-PCR assay for rapid diagnosis of these three organisms directly from bronchoalveolar lavage (BAL) specimens of patients infected with HIV. Methods The genus specific primers were designed for direct-detection of Nocardia, Streptomyces and Rhodococcus in a single tube multiplex PCR. This PCR specifically amplified the target genes from pure cultures. It subsequently was applied on BAL specimens of 29 HIV positive patients that had previously been culture negative for actinomycete bacteria, of which Nocardia, Streptomyces and Rhodococcus are members. Results Of 29 respiratory clinical specimens, there were positive for Nocardia spp. and one was positive for Streptomyces spp using the multiplex PCR assay. The sequencing of the PCR products identified the species as Nocardia cyriacigeorgica (n=2), Nocardia farcinica and Streptomyces albus. Conclusion This novel multiplex PCR assay yielded reliable results for accurate identification of Nocardia, Streptomyces and Rhodococcus from BAL while the results of bacterial culture were negative.
Collapse
Affiliation(s)
- Hossein Ali Rahdar
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Reza Salehi
- Department of Infectious and Tropical Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Abass Bahador
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedesomaye Jasemi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Karami-Zarandi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Malehe Hasan Nejad
- Department of Infectious and Tropical Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Shahraki-Zahedani
- Department of Medical Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Jafar Amani
- Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seifu Gizaw Feyisa
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biology, College of Natural Sciences, Jimma University, Ethiopia
| | - Jalil Kardan-Yamchi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
da Silva Campana P, Martinho LZM, Batista MV, Higashino H, Rizek C, Rossi F, Oliveira FN, Rocha V, Costa SF. Rhodococcus hoagii bloodstream infection in an allogeneic hematopoietic stem cell transplantation patient: Case report and review of literature. IDCases 2020; 20:e00724. [PMID: 32154104 PMCID: PMC7057186 DOI: 10.1016/j.idcr.2020.e00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/03/2022] Open
Abstract
We report a case of bloodstream infection caused by R. hoagii in a woman with acute myeloid leukemia, 37-years-old, who received an allogeneic hematopoietic stem cell transplant. She developed cutaneous and gastrointestinal tract graft versus host disease, respectively on day 29 and day 69. On day 157 she developed to acute severe respiratory failure. Rhodococcus sp was identified by MALDI-TOF and 16S rRNA sequencing from blood culture as Rhodococcus hoagii. The patient was a nurse that lived in urban areas, and stated no recent trips to countryside areas neither contacted with animals. Despite of the treatment with antibiotics with action against R. hoagii such as linezolid and meropenem the patient evolved to multiorgan dysfunction and death. Our case-report emphasizes the importance of early diagnosis and the use of 16S rRNA sequencing to confirmed the identification of species of Rhodococcus infection.
Collapse
Affiliation(s)
| | | | - Marjorie Vieira Batista
- Infectious Diseases Division of Hospital das Clinicas of University of São Paulo, São Paulo, Brazil
| | - Hermes Higashino
- Infectious Diseases Division of Hospital das Clinicas of University of São Paulo, São Paulo, Brazil
| | - Camila Rizek
- LIM49-Instituto de Medicina Tropical of University of São Paulo, São Paulo, Brazil
| | - Flavia Rossi
- Laboratory of Microbiology of Hospital das Clínicas of University of São Paulo, São Paulo, Brazil
| | - Fernando Nivaldo Oliveira
- Infectious Diseases Department of Hospital das Clinicas of University of São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Bone Marrow Transplantation Unit of Hospital das Clínicas of University of São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases of Faculdade de Medicina of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Ghazvini K, Keikha M. Comment on "Rhodococcus equi Pneumonia in Kidney Transplant Recipient Affected by Acute Intermittent Porphyria: A Case Report". Transplant Proc 2020; 52:423-424. [PMID: 31911054 DOI: 10.1016/j.transproceed.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Complete Genome Sequence of Rhodococcus sp. Strain SGAir0479, Isolated from Indoor Air Collected in Singapore. Microbiol Resour Announc 2019; 8:8/40/e00622-19. [PMID: 31582433 PMCID: PMC6776762 DOI: 10.1128/mra.00622-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome sequence of Rhodococcus sp. strain SGAir0479 is presented here. This organism was isolated from an air sample collected in an indoor location in Singapore. The consensus assembly generated one chromosome of 4.86 Mb (G+C content of 69.8%) and one plasmid of 104,493 bp. The complete genome sequence of Rhodococcus sp. strain SGAir0479 is presented here. This organism was isolated from an air sample collected in an indoor location in Singapore. The consensus assembly generated one chromosome of 4.86 Mb (G+C content of 69.8%) and one plasmid of 104,493 bp.
Collapse
|
32
|
First Microbiological and Molecular Identification of Rhodococcus equi in Feces of Nondiarrheic Cats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4278598. [PMID: 31380423 PMCID: PMC6652081 DOI: 10.1155/2019/4278598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/16/2019] [Indexed: 12/28/2022]
Abstract
Rhodococcus equi is responsible for infections in multiple-host animals. In humans, the prevalence of rhodococcus has increased worldwide and represents an emergent risk. R. equi is a soil-borne opportunistic bacterium isolated from feces of a wide variety of domestic species, except cats; thus, there is no known potential risk of its transmission from humans. Here, the mono- and cooccurrence of Rhodococcus equi and other bacteria and selected virulence markers were investigated in feces of nondiarrheic cats from urban (n=100) and rural (n=100) areas. Seven (7/200=3.5%) R. equi isolates were recovered in ceftazidime, novobiocin, and cycloheximide (CAZ-NB) selective media, exclusively of cats from three distinct farms (p=0.01), and these cats had a history of contact with horses and their environment (p=0.0002). None of the R. equi isolates harbored hosted-adapted plasmid types associated with virulence (pVAPA, pVAPB, and pVAPN). One hundred seventy-five E. coli isolates were identified, and 23 atypical enteropathogenic E. coli (aEPEC), 1 STEC (Shiga-toxin producing E. coli), and 1 EAEC (enteroaggregative E. coli) were detected. Eighty-six C. perfringens type A isolates were identified, and beta-2 and enterotoxin were detected in 21 and 1 isolates, respectively. Five C. difficile isolates were identified, one of which was toxigenic and ribotype 106. The main cooccurring isolates in cats from urban areas were E. coli and C. perfringens A (26/100=26%), E. coli and C. perfringens type A cpb2+ (8/100=8%), and aEPEC (eae+/escN+) and C. perfringens type A (5/100=5%). In cats from farms, the main cooccurring isolates were E. coli and C. perfringens type A (21/100=21%), E. coli and C. perfringens type A cpb2+ 8/100=8%), and E. coli and R. equi (4/100=4%). We identified, for the first time, R. equi in nondiarrheic cats, a finding that represents a public health issue because rhodococcus has been reported in both immunosuppressed and immunocompetent humans, particularly people living with HIV/AIDS.
Collapse
|
33
|
Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 2019; 38:1599-1624. [PMID: 31250336 DOI: 10.1007/s10096-019-03580-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum.
Collapse
|
34
|
Neonatal bacteremia and oligoarthritis caused by Rhodococcus corynebacterioides/Rhodococcus kroppenstedtii. Diagn Microbiol Infect Dis 2019; 94:395-397. [PMID: 30857916 DOI: 10.1016/j.diagmicrobio.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 11/21/2022]
|