1
|
Kritikos A, Prod'hom G, Jacot D, Croxatto A, Greub G. The Impact of Laboratory Automation on the Time to Urine Microbiological Results: A Five-Year Retrospective Study. Diagnostics (Basel) 2024; 14:1392. [PMID: 39001282 PMCID: PMC11240889 DOI: 10.3390/diagnostics14131392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Total laboratory automation (TLA) is a valuable component of microbiology laboratories and a growing number of publications suggest the potential impact of automation in terms of analysis standardization, streaking quality, and the turnaround time (TAT). The aim of this project was to perform a detailed investigation of the impact of TLA on the workflow of commonly treated specimens such as urine. This is a retrospective observational study comparing two time periods (pre TLA versus post TLA) for urine specimen culture processing. A total of 35,864 urine specimens were plated during the pre-TLA period and 47,283 were plated during the post-TLA period. The median time from streaking to identification decreased from 22.3 h pre TLA to 21.4 h post TLA (p < 0.001), and the median time from streaking to final validation of the report decreased from 24.3 h pre TLA to 23 h post TLA (p < 0.001). Further analysis revealed that the observed differences in TAT were mainly driven by the contaminated and positive samples. Our findings demonstrate that TLA has the potential to decrease turnaround times of samples in a laboratory. Nevertheless, changes in laboratory workflow (such as extended opening hours for plate reading and antibiotic susceptibility testing or decreased incubation times) might further maximize the efficiency of TLA and optimize TATs.
Collapse
Affiliation(s)
- Antonios Kritikos
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
- Unité d'Infectiologie, Département de Médecine, Hôpital de Fribourg HFR, 1752 Villars-sur-Glâne, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| | - Damien Jacot
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| | - Antony Croxatto
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
- ADMED Microbiology, 2000 La Chaux-de-Fonds, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
2
|
Walsh TJ, Mencacci A, Paggi R, Douka E, Vrettou C, Smith R, Guzman O. Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. J Clin Microbiol 2024; 62:e0129623. [PMID: 38456690 PMCID: PMC11005387 DOI: 10.1128/jcm.01296-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: blaKPC, blaCTXM-14/15, blaNDM/bla/IMP/blaVIM, blaAmpC, blaOXA, vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: blaKPC (n = 10), blaNDM/bla/IMP/blaVIM (n = 5), blaCTXM-14/15 (n = 4), blaAmpC (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for blaCTXM-14/15, blaNDM/bla/IMP/blaVIM, blaAmpC, mecA/mecC and 87.5% for blaKPC. When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for blaKPC. In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.
Collapse
Affiliation(s)
- Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- Departments of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antonella Mencacci
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Microbiology Unit, Perugia General Hospital, Perugia, Italy
| | - Riccardo Paggi
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Evangelia Douka
- First Department of Critical Care, University of Athens, Evangelismos General Hospital, Athens, Greece
| | - Charikleia Vrettou
- First Department of Critical Care, University of Athens, Evangelismos General Hospital, Athens, Greece
| | - Roger Smith
- T2 Biosystems, Lexington, Massachusetts, USA
| | | |
Collapse
|
3
|
Ou YH, Chang YT, Chen DP, Chuang CW, Tsao KC, Wu CH, Kuo AJ, You HL, Huang CG. Benefit analysis of the auto-verification system of intelligent inspection for microorganisms. Front Microbiol 2024; 15:1334897. [PMID: 38562474 PMCID: PMC10982382 DOI: 10.3389/fmicb.2024.1334897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, the automatic machine for microbial identification and antibiotic susceptibility tests has been introduced into the microbiology laboratory of our hospital, but there are still many steps that need manual operation. The purpose of this study was to establish an auto-verification system for bacterial naming to improve the turnaround time (TAT) and reduce the burden on clinical laboratory technologists. After the basic interpretation of the gram staining results of microorganisms, the appearance of strain growth, etc., the 9 rules were formulated by the laboratory technologists specialized in microbiology for auto-verification of bacterial naming. The results showed that among 70,044 reports, the average pass rate of auto-verification was 68.2%, and the reason for the failure of auto-verification was further evaluated. It was found that the main causes reason the inconsistency between identification results and strain appearance rationality, the normal flora in the respiratory tract and urine that was identified, the identification limitation of the mass spectrometer, and so on. The average TAT for the preliminary report of bacterial naming was 35.2 h before, which was reduced to 31.9 h after auto-verification. In summary, after auto-verification, the laboratory could replace nearly 2/3 of manual verification and issuance of reports, reducing the daily workload of medical laboratory technologists by about 2 h. Moreover, the TAT on the preliminary identification report was reduced by 3.3 h on average, which could provide treatment evidence for clinicians in advance.
Collapse
Affiliation(s)
- Yu-Hsiang Ou
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Ta Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang, Gung University, Taoyuan,, Taiwan
| | - Chun-Wei Chuang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiu-Hsiang Wu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - An-Jing Kuo
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huey-Ling You
- Departments of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
4
|
Mencacci A, De Socio GV, Pirelli E, Bondi P, Cenci E. Laboratory automation, informatics, and artificial intelligence: current and future perspectives in clinical microbiology. Front Cell Infect Microbiol 2023; 13:1188684. [PMID: 37441239 PMCID: PMC10333692 DOI: 10.3389/fcimb.2023.1188684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Clinical diagnostic laboratories produce one product-information-and for this to be valuable, the information must be clinically relevant, accurate, and timely. Although diagnostic information can clearly improve patient outcomes and decrease healthcare costs, technological challenges and laboratory workflow practices affect the timeliness and clinical value of diagnostics. This article will examine how prioritizing laboratory practices in a patient-oriented approach can be used to optimize technology advances for improved patient care.
Collapse
Affiliation(s)
- Antonella Mencacci
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Microbiology, Perugia General Hospital, Perugia, Italy
| | | | - Eleonora Pirelli
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Bondi
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Microbiology, Perugia General Hospital, Perugia, Italy
| |
Collapse
|
5
|
Antonios K, Croxatto A, Culbreath K. Current State of Laboratory Automation in Clinical Microbiology Laboratory. Clin Chem 2021; 68:99-114. [PMID: 34969105 DOI: 10.1093/clinchem/hvab242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Although it has been 30 years since the first automation systems were introduced in the microbiology laboratory, total laboratory automation (TLA) has only recently been recognized as a valuable component of the laboratory. A growing number of publications illustrate the potential impact of automation. TLA can improve standardization, increase laboratory efficiency, increase workplace safety, and reduce long-term costs. CONTENT This review provides a preview of the current state of automation in clinical microbiology and covers the main developments during the last years. We describe the available hardware systems (that range from single function devices to multifunction workstations) and the challenging alterations on workflow and organization of the laboratory that have to be implemented to optimize automation. SUMMARY Despite the many advantages in efficiency, productivity, and timeliness that automation offers, it is not without new and unique challenges. For every advantage that laboratory automation provides, there are similar challenges that a laboratory must face. Change management strategies should be used to lead to a successful implementation. TLA represents, moreover, a substantial initial investment. Nevertheless, if properly approached, there are a number of important benefits that can be achieved through implementation of automation in the clinical microbiology laboratory. Future developments in the field of automation will likely focus on image analysis and artificial intelligence improvements. Patient care, however, should remain the epicenter of all future directions and there will always be a need for clinical microbiology expertise to interpret the complex clinical and laboratory information.
Collapse
Affiliation(s)
- Kritikos Antonios
- University of Lausanne, Institute of Microbiology, Lausanne, Switzerland
| | - Antony Croxatto
- University of Lausanne, Institute of Microbiology, Lausanne, Switzerland
| | | |
Collapse
|
6
|
Guidi F, Chiaverini A, Repetto A, Lorenzetti C, Centorotola G, Bazzucchi V, Palombo B, Gattuso A, Pomilio F, Blasi G. Hyper-Virulent Listeria monocytogenes Strains Associated With Respiratory Infections in Central Italy. Front Cell Infect Microbiol 2021; 11:765540. [PMID: 34746033 PMCID: PMC8564288 DOI: 10.3389/fcimb.2021.765540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen causing listeriosis. Invasive forms of the disease mainly manifest as septicaemia, meningitis and maternal-neonatal infections. Lm-associated respiratory infections are very rare and little known. We reported two Lm respiratory infection cases occurred in Central Italy during the summer of 2020, in the midst of the SARS-CoV2 pandemic. In addition to collect the epidemiological and clinical characteristics of the patients, we used Whole Genome Sequencing to study the genomes of the Lm isolates investigating their virulence and antimicrobial profiles and the presence of genetic mobile elements. Both the strains belonged to hypervirulent MLST clonal complexes (CC). In addition to the Listeria Pathogenicity Island 1 (LIPI-1), the CC1 strain also carried LIPI-3 and the CC4 both LIPI-3 and LIPI-4. Genetic determinants for antimicrobial and disinfectants resistance were found. The CC1 genome presented prophage sequences but they did not interrupt the comK gene, involved in the phagosomal escape of Lm. None of the strains carried plasmids. Lm is an important, although rare, opportunistic pathogen for respiratory tract and lung infections. To avoid dangerous diagnostic delays of these severe clinical forms, it is important to sensitize hospital laboratories to this rare manifestation of listeriosis considering Lm in the differential diagnosis of respiratory infections.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Alexandra Chiaverini
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Antonella Repetto
- Struttura complessa di Microbiologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Cinzia Lorenzetti
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Gabriella Centorotola
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Viviana Bazzucchi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Barbara Palombo
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Antonietta Gattuso
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| |
Collapse
|
7
|
Paggi R, Cenci E, De Socio GV, Belati A, Marini D, Gili A, Camilloni B, Mencacci A. Accuracy and Impact on Patient Management of New Tools for Diagnosis of Sepsis: Experience with the T2 Magnetic Resonance Bacteria Panel. Pathogens 2021; 10:pathogens10091132. [PMID: 34578164 PMCID: PMC8465567 DOI: 10.3390/pathogens10091132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of pathogens responsible for sepsis is essential for prompt and effective antimicrobial therapy. Molecular technologies have been developed to detect the most common causative agents, with high sensitivity and short time to result (TTR). T2 Bacteria Panel (T2), based on a combination of PCR and T2 magnetic resonance, can identify directly in blood samples Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, and Acinetobacter baumannii pathogens. This study evaluates the role of T2 in the diagnosis of sepsis and its impact on patient management, specifically in terms of TTR and the switch from empirical to directed therapy, comparing results of blood culture (BC) and T2 assay in 82 patients with sepsis. T2 significantly improved the detection of the causative agents of sepsis. For pathogens included in the panel, T2 sensitivity was 100% (95% CI 86.3–100.0), significantly higher than that of BC (54.8%, 95% CI 36.0–72.7). The TTR (median, IQR) of positive T2 (3.66 h, 3.59–4.31) was significantly shorter than that of the positive BC (37.58 h, 20.10–47.32). A significant reduction in the duration of empiric therapy and an increase in the percentage of patients with switched therapy was observed in patients with a positive T2 result. In conclusion, T2 can shorten and improve the etiological diagnosis of sepsis with a positive impact on patient management.
Collapse
Affiliation(s)
- Riccardo Paggi
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Elio Cenci
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | | | - Alessandra Belati
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Daniele Marini
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Alessio Gili
- Public Health Section, Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy;
| | - Barbara Camilloni
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
| | - Antonella Mencacci
- Medical Microbiology Section, Department of Medicine, University of Perugia, Polo Unico Sant’Andrea delle Fratte, 06132 Perugia, Italy; (R.P.); (E.C.); (A.B.); (D.M.); (B.C.)
- Correspondence:
| |
Collapse
|
8
|
Cenci E, Paggi R, Socio GVD, Bozza S, Camilloni B, Pietrella D, Mencacci A. Accelerate Pheno™ blood culture detection system: a literature review. Future Microbiol 2020; 15:1595-1605. [PMID: 33215528 DOI: 10.2217/fmb-2020-0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accelerate Pheno™ (ACC) is a fully automated system providing rapid identification of a panel of bacteria and yeasts, and antimicrobial susceptibility testing of common bacterial pathogens responsible for bloodstream infections and sepsis. Diagnostic accuracy for identification ranges from 87.9 to 100%, and antimicrobial susceptibility testing categorical agreement is higher than 91%. The present review includes peer-reviewed studies on ACC published to date. Both interventional and hypothetical studies evidenced the potential positive clinical role of ACC in the management and therapy of patients with bloodstream infections and sepsis, due to the important reduction in time to report, suggesting a crucial impact on the therapeutic management of these patients, provided the presence of a hospital antimicrobial stewardship program, a 24/7 laboratory operating time and a strict collaboration between clinical microbiologist and clinician. Further prospective multicenter studies are necessary to explore the impact of this system on mortality, length of stay and spread of multidrug-resistant organisms.
Collapse
Affiliation(s)
- Elio Cenci
- Department of Medicine, Medical Microbiology, University of Perugia, Perugia, Italy.,Microbiology, Perugia General Hospital, Perugia, Italy
| | - Riccardo Paggi
- Department of Medicine, Medical Microbiology, University of Perugia, Perugia, Italy
| | | | - Silvia Bozza
- Department of Medicine, Medical Microbiology, University of Perugia, Perugia, Italy.,Microbiology, Perugia General Hospital, Perugia, Italy
| | - Barbara Camilloni
- Department of Medicine, Medical Microbiology, University of Perugia, Perugia, Italy.,Microbiology, Perugia General Hospital, Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine, Medical Microbiology, University of Perugia, Perugia, Italy.,Microbiology, Perugia General Hospital, Perugia, Italy
| | - Antonella Mencacci
- Department of Medicine, Medical Microbiology, University of Perugia, Perugia, Italy.,Microbiology, Perugia General Hospital, Perugia, Italy
| |
Collapse
|
9
|
Laboratory and clinical impacts of an overnight laboratory service. Eur J Clin Microbiol Infect Dis 2020; 40:353-359. [PMID: 32960364 DOI: 10.1007/s10096-019-03737-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 01/02/2023]
Abstract
Delayed initiation of effective antimicrobial therapy for sepsis is associated with increased mortality. Whilst automated blood culture machines operate continuously, this does not align with conventional staff working hours and so turn-around-times (TAT) for reporting gram stains to clinicians are 3-7 times longer for blood cultures that flag positive overnight. We retrospectively compared laboratory TATs and clinical outcomes for blood cultures from 183 patients that flagged positive overnight during a 4-month period before and after the implementation of an overnight laboratory service. Enterobacterales and urinary tract infections were the most frequent pathogens and clinical syndrome respectively, and the prevalence of multi-resistant organisms was 15%. Compared with the pre-implementation period, the post-implementation period was associated with shorter median time from blood culture positivity to gram stain (7.4 vs 1.2 h), first genus level identification (7.2 vs 5.8 h) and first antimicrobial susceptibility result (24.1 vs 7.9 h). Similarly, the median time from blood culture positivity to clinicians first being informed was significantly shorter (9.2 vs 1.3 h). After removal of likely contaminants, 78% of patients were on effective empiric antimicrobials and for patients on ineffective empiric antimicrobials, effective therapy was initiated a median of 3.2 h sooner during the post-implementation period, without impact on mortality. Implementation of an overnight laboratory service was associated with significantly faster TAT for reporting blood culture results and more prompt initiation of effective antimicrobials for patients receiving ineffective empiric therapy, improving attainment of sepsis management goals.
Collapse
|
10
|
Vandenberg O, Durand G, Hallin M, Diefenbach A, Gant V, Murray P, Kozlakidis Z, van Belkum A. Consolidation of Clinical Microbiology Laboratories and Introduction of Transformative Technologies. Clin Microbiol Rev 2020; 33:e00057-19. [PMID: 32102900 PMCID: PMC7048017 DOI: 10.1128/cmr.00057-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinical microbiology is experiencing revolutionary advances in the deployment of molecular, genome sequencing-based, and mass spectrometry-driven detection, identification, and characterization assays. Laboratory automation and the linkage of information systems for big(ger) data management, including artificial intelligence (AI) approaches, also are being introduced. The initial optimism associated with these developments has now entered a more reality-driven phase of reflection on the significant challenges, complexities, and health care benefits posed by these innovations. With this in mind, the ongoing process of clinical laboratory consolidation, covering large geographical regions, represents an opportunity for the efficient and cost-effective introduction of new laboratory technologies and improvements in translational research and development. This will further define and generate the mandatory infrastructure used in validation and implementation of newer high-throughput diagnostic approaches. Effective, structured access to large numbers of well-documented biobanked biological materials from networked laboratories will release countless opportunities for clinical and scientific infectious disease research and will generate positive health care impacts. We describe why consolidation of clinical microbiology laboratories will generate quality benefits for many, if not most, aspects of the services separate institutions already provided individually. We also define the important role of innovative and large-scale diagnostic platforms. Such platforms lend themselves particularly well to computational (AI)-driven genomics and bioinformatics applications. These and other diagnostic innovations will allow for better infectious disease detection, surveillance, and prevention with novel translational research and optimized (diagnostic) product and service development opportunities as key results.
Collapse
Affiliation(s)
- Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Groupement Hospitalier Universitaire de Bruxelles (GHUB), Université Libre de Bruxelles, Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Géraldine Durand
- bioMérieux, Microbiology Research and Development, La Balme Les Grottes, France
| | - Marie Hallin
- Department of Microbiology, LHUB-ULB, Groupement Hospitalier Universitaire de Bruxelles (GHUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| | - Vanya Gant
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Patrick Murray
- BD Life Sciences Integrated Diagnostic Solutions, Scientific Affairs, Sparks, Maryland, USA
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Alex van Belkum
- bioMérieux, Open Innovation and Partnerships, La Balme Les Grottes, France
| |
Collapse
|
11
|
Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) for positive blood cultures in clinical practice using a total lab automation. Eur J Clin Microbiol Infect Dis 2020; 39:1305-1313. [PMID: 32112163 PMCID: PMC7303068 DOI: 10.1007/s10096-020-03846-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 11/07/2022]
Abstract
Our objective was to evaluate EUCAST’s ‘rapid antimicrobial susceptibility testing’ (RAST) directly from positive blood culture that delivers antimicrobial results within 6 h for Staphylococcus aureus, Enterococcus spp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, using total lab automation. Zone diameters from RAST were compared with MIC results. Furthermore, its influence on time to report was investigated. RAST was performed to all positive aerobic and anaerobic blood culture bottles by subculturing them, i.e. onto Mueller-Hinton agar and adding six antibiotic discs covering Gram-negative and Gram-positive therapy (cefoxitin, ampicillin, vancomycin, piperacillin/tazobactam, meropenem and ciprofloxacin). RAST was automatically imaged after 6 h. Zone sizes were measured using a TLA software tool and interpreted according to EUCAST clinical breakpoints. Bacteria were identified using MALDI-TOF MS and MIC results were determined using Vitek2 panels. Categorial agreement between agar diffusion and MIC results was investigated. Additionally, time to RAST and time to Vitek were compared for 100 isolates (20 per species). Between November 2018 and April 2019, 3313 positive mono-bacterial blood culture bottles were collected of which 894 bottles with RAST-validated species were investigated. Among these bottles, 2029 individual antibiotic measurements were compared with MIC results from Vitek2 and 14 very major, 28 major and 12 minor errors were found. A median reduction of 17:30 h in time to report was observed. Introduction of RAST with automatic TLA imaging function could reduce time to report by 17:30 h. Excellent accordance between zone diameter and MIC results, particularly for cefoxitin, vancomycin and meropenem, was observed, but drawbacks due to ATU were seen.
Collapse
|
12
|
Desjardins M, Sant N, Miron-Celis M, Gosal J, Jémus MF, Jémus-Gonzalez E. Impact of reduced incubation times on culture and susceptibility testing of urine cultures incubated in the BD Kiestra ReadA Compact incubators. Diagn Microbiol Infect Dis 2019; 96:114899. [PMID: 31672455 DOI: 10.1016/j.diagmicrobio.2019.114899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
We determined the impact of reducing incubation times for urine cultures incubated in BD Kiestra ReadA Compact incubators. Urine samples (n = 348) were inoculated to solid media, incubated in the ReadA Compacts and processed at 12, 15, and 18 h. Colony size and identification by MALDI-TOF, growth, semi-quantitation, Vitek and disk diffusion susceptibilities from cultures incubated at 12 and 15 h were compared to 18 h. There was no impact on MALDI-TOF performed after 12 and 15 versus 18 h of incubation. Interpretation for 99% of urine cultures was identical at 15 and 18 h. There was no major or very major error for VitekII or disk diffusion testing with >94% and >92% overall agreement for Gram-negative and positives organisms, respectively. Therefore, reducing the maximum incubation times of primary cultures incubated in the ReadA Compacts from 18 h to 15 h did not impact outcomes.
Collapse
Affiliation(s)
- M Desjardins
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada; Eastern Ontario Regional Laboratory Association, Ottawa, Ontario Canada.
| | - N Sant
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada; Eastern Ontario Regional Laboratory Association, Ottawa, Ontario Canada
| | - M Miron-Celis
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - J Gosal
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
13
|
|
14
|
De Socio GV, Rubbioni P, Botta D, Cenci E, Belati A, Paggi R, Pasticci MB, Mencacci A. Measurement and prediction of antimicrobial resistance in bloodstream infections by ESKAPE pathogens and Escherichia coli. J Glob Antimicrob Resist 2019; 19:154-160. [PMID: 31112804 DOI: 10.1016/j.jgar.2019.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate a cumulative antimicrobial resistance index (ARI) as a possible key outcome measure of antimicrobial stewardship programmes (ASPs) and a tool to predict the antimicrobial resistance (AMR) trend. METHODS Antimicrobial susceptibility for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli (ESKAPEEc) pathogens recovered from blood cultures during a 5-year period (2014-2018) was analysed to obtain a cumulative ARI. For each antibiotic tested, a score of 0, 0.5 or 1 was assigned for susceptibility, intermediate resistance or resistance, respectively, and the ARI was calculated by dividing the sum of these scores by the number of antibiotics tested. Cumulative ARIs of ESKAPEEc micro-organisms were compared and a mathematical prediction model for AMR trend was obtained. RESULTS In total, 1858 ESKAPEEc isolates were included in the study. The cumulative ESKAPEEc mean ARI increased significantly from 0.200 ± 0.01 in 2014 to 0.276 ± 0.02 in 2018 (P < 0.001). In multivariable regression analysis, factors significantly associated with ARI ≥ 0.5 were E. faecium, K. pneumoniae, P. aeruginosa and A. baumannii infection (P < 0.001) and infection occurring after 2014 (P < 0.05). Based on the prediction model obtained, in the absence of any interventional measure, a tendency to pandrug resistance of the ESKAPEEc group could be expected in the next 8-15 years. CONCLUSION The ARI could be a useful tool to measure the impact of ASPs on AMR. The increasing incidence of AMR among ESKAPEEc organisms underscores the needing for ASPs.
Collapse
Affiliation(s)
- Giuseppe Vittorio De Socio
- Unit of Infectious Diseases, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.
| | - Paola Rubbioni
- Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy
| | - Daniele Botta
- Unit of Infectious Diseases, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Alessandra Belati
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Riccardo Paggi
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Maria Bruna Pasticci
- Unit of Infectious Diseases, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Antonella Mencacci
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Reducing the time between inoculation and first-read of urine cultures using total lab automation significantly reduces turn-around-time of positive culture results with minimal loss of first-read sensitivity. Eur J Clin Microbiol Infect Dis 2019; 38:1135-1141. [DOI: 10.1007/s10096-019-03512-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 02/04/2023]
|
16
|
Burckhardt I. Laboratory Automation in Clinical Microbiology. Bioengineering (Basel) 2018; 5:bioengineering5040102. [PMID: 30467275 PMCID: PMC6315553 DOI: 10.3390/bioengineering5040102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/21/2023] Open
Abstract
Laboratory automation is currently the main organizational challenge for microbiologists. Automating classic workflows is a strenuous process for the laboratory personnel and a huge and long-lasting financial investment. The investments are rewarded through increases in quality and shortened time to report. However, the benefits for an individual laboratory can only be estimated after the implementation and depending on the classic workflows currently performed. The two main components of automation are hardware and workflow. This review focusses on the workflow aspects of automation and describes some of the main developments during recent years. Additionally, it tries to define some terms which are related to automation and specifies some developments which would further improve automated systems.
Collapse
Affiliation(s)
- Irene Burckhardt
- Department for Infectious Diseases, Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|