1
|
Jotic A, Savic Vujovic K, Cirkovic A, Božić DD, Brkic S, Subotic N, Bukurov B, Korugic A, Cirkovic I. Antibiofilm Effects of Novel Compounds in Otitis Media Treatment: Systematic Review. Int J Mol Sci 2024; 25:12841. [PMID: 39684553 DOI: 10.3390/ijms252312841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Otitis media (OM) is a frequent disease with incidence rate of 5300 cases per 100,000 people. Recent studies showed that polymicrobial biofilm formation represents a significant pathogenic mechanism in recurrent and chronic forms of OM. Biofilm enables bacteria to resist antibiotics that would typically be recommended in guidelines, contributing to the ineffectiveness of current antimicrobial strategies. Given the challenges of successfully treating bacterial biofilms, there is an growing interest in identifying novel and effective compounds to overcome antibacterial resistance. The objective of this review was to provide an overview of the novel compounds with antibiofilm effects on bacterial biofilm formed by clinical isolates of OM. The systematic review included studies that evaluated antibiofilm effect of novel natural or synthetic compounds on bacterial biofilm formed from clinical isolates obtained from patients with OM. The eligibility criteria were defined using the PICOS system: (P) Population: all human patients with bacterial OM; (I) Intervention: novel natural or synthetic compound with biofilm effect; (C) Control standard therapeutic antimicrobial agents or untreated biofilms, (O) Outcome: antibiofilm effect (biofilm inhibition, biofilm eradication), (S) Study design. The PRISMA protocol for systematic reviews and meta-analysis was followed. From 3564 potentially eligible studies, 1817 duplicates were removed, and 1705 were excluded according to defined exclusion criteria. A total of 41 studies with available full texts were retrieved by two independent authors. Fifteen articles were selected for inclusion in the systematic review which included 125 patients with OM. A total of 17 different novel compounds were examined, including N-acetyl-L-cysteine (NAC), tea tree oil, xylitol, eugenol, Aloe barbadensis, Zingiber officinale, Curcuma longa, Acacia arabica, antisense peptide nucleic acids, probiotics Streptococcus salivarius and Streptococcus oralis, Sodium 2-mercaptoethanesulfonate (MESNA), bioactive glass, green synthesized copper oxide nanoparticles, radish, silver nanoparticles and acetic acid. Staphylococcus aureus was the most commonly studied pathogen, followed by Pseudomonas aeruginosa and Haemophilus influenzae. Biofilm inhibition only by an examined compound was assessed in six studies; biofilm eradication in four studies, and both biofilm inhibition and biofilm eradication were examined in five studies. This systematic review indicates that some compounds like NAC, prebiotics, nanoparticles and MESNA that have significant effects on biofilm are safe and could be researched more extensively for further clinical use. However, a lack of data about reliable and efficient compounds used in therapy of different types of otitis media still remains in the literature.
Collapse
Affiliation(s)
- Ana Jotic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Katarina Savic Vujovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Snezana Brkic
- Institute for Laboratory Diagnostics "Konzilijum", Sv. Save 28a, 11000 Belgrade, Serbia
| | - Nikola Subotic
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Bojana Bukurov
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Aleksa Korugic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Ivana Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Principi N, Esposito S. Biofilm Production and Its Implications in Pediatrics. Microorganisms 2024; 12:1522. [PMID: 39203365 PMCID: PMC11356046 DOI: 10.3390/microorganisms12081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Biofilms, aggregates of bacteria enclosed in a self-produced matrix, have been implicated in various pediatric respiratory infections, including acute otitis media (AOM), otitis media with effusion (OME), adenoiditis, protracted bacterial bronchitis, and pulmonary exacerbations in cystic fibrosis. These infections are prevalent in children and often associated with biofilm-producing pathogens, leading to recurrent and chronic conditions. Biofilms reduce antibiotic efficacy, contributing to treatment failure and disease persistence. This narrative review discusses biofilm production by respiratory pathogens such as Streptococcus pneumoniae, non-typeable Haemophilus influenzae, Pseudomonas aeruginosa, and Staphylococcus aureus. It examines their mechanisms of biofilm formation, antibiotic resistance, and the challenges they present in clinical treatment. Various antibiofilm strategies have shown promise in vitro and in animal studies, including the use of N-acetylcysteine, enzymes like dispersin B, and agents disrupting quorum sensing and biofilm matrix components. However, their clinical application, particularly in children, remains limited. Traditional treatments for biofilm-associated diseases have not significantly evolved, even with biofilm detection. The transition from experimental findings to clinical practice is complex and requires robust clinical trials and standardized biofilm detection protocols. Addressing biofilms in pediatric respiratory infections is crucial for improving treatment outcomes and managing recurrent and chronic diseases effectively.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Tamir SO, Bialasiewicz S, Brennan-Jones CG, Der C, Kariv L, Macharia I, Marsh RL, Seguya A, Thornton R. ISOM 2023 research Panel 4 - Diagnostics and microbiology of otitis media. Int J Pediatr Otorhinolaryngol 2023; 174:111741. [PMID: 37788516 DOI: 10.1016/j.ijporl.2023.111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES To identify and review key research advances from the literature published between 2019 and 2023 on the diagnosis and microbiology of otitis media (OM) including acute otitis media (AOM), recurrent AOM (rAOM), otitis media with effusion (OME), chronic suppurative otitis media (CSOM) and AOM complications (mastoiditis). DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS All relevant original articles published in Medline in English between July 2019 and February 2023 were identified. Studies that were reviews, case studies, relating to OM complications (other than mastoiditis), and studies focusing on guideline adherence, and consensus statements were excluded. Members of the panel drafted the report based on these search results. MAIN FINDINGS For the diagnosis section, 2294 unique records screened, 55 were eligible for inclusion. For the microbiology section 705 unique records were screened and 137 articles were eligible for inclusion. The main themes that arose in OM diagnosis were the need to incorporate multiple modalities including video-otoscopy, tympanometry, telemedicine and artificial intelligence for accurate diagnoses in all diagnostic settings. Further to this, was the use of new, cheap, readily available tools which may improve access in rural and lowmiddle income (LMIC) settings. For OM aetiology, PCR remains the most sensitive method for detecting middle ear pathogens with microbiome analysis still largely restricted to research use. The global pandemic response reduced rates of OM in children, but post-pandemic shifts should be monitored. IMPLICATION FOR PRACTICE AND FUTURE RESEARCH Cheap, easy to use multi-technique assessments combined with artificial intelligence and/or telemedicine should be integrated into future practice to improve diagnosis and treatment pathways in OM diagnosis. Longitudinal studies investigating the in-vivo process of OM development, timings and in-depth interactions between the triad of bacteria, viruses and the host immune response are still required. Standardized methods of collection and analysis for microbiome studies to enable inter-study comparisons are required. There is a need to target underlying biofilms if going to effectively prevent rAOM and OME and possibly enhance ventilation tube retention.
Collapse
Affiliation(s)
- Sharon Ovnat Tamir
- Department of Otolaryngology-Head and Neck Surgery, Sasmon Assuta Ashdod University Hospital, Faculty of Health Sciences, Ben Gurion University of the Negev, Israel.
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher G Brennan-Jones
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Carolina Der
- Facultad de Medicina, Universidad Del Desarrollo, Dr Luis Calvo Mackenna Hospital, Santiago, Chile
| | - Liron Kariv
- Hearing, Speech and Language Institute, Sasmon Assuta Ashdod University Hospital, Israel
| | - Ian Macharia
- Kenyatta University Teaching, Referral & Research Hospital, Kenya
| | - Robyn L Marsh
- Menzies School of Health Research, Darwin, Australia; School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Amina Seguya
- Department of Otolaryngology - Head and Neck Surgery, Mulago National Referral Hospital, Kampala, Uganda
| | - Ruth Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Centre for Child Health Research, University of Western Australia, Perth, Australia
| |
Collapse
|
4
|
Raza S, Wdowiak M, Grotek M, Adamkiewicz W, Nikiforow K, Mente P, Paczesny J. Enhancing the antimicrobial activity of silver nanoparticles against ESKAPE bacteria and emerging fungal pathogens by using tea extracts. NANOSCALE ADVANCES 2023; 5:5786-5798. [PMID: 37881701 PMCID: PMC10597549 DOI: 10.1039/d3na00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/12/2023] [Indexed: 10/27/2023]
Abstract
The sale of antibiotics and antifungals has skyrocketed since 2020. The increasing threat of pathogens like ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), which are effective in evading existing antibiotics, and yeasts like Candida auris or Cryptococcus neoformans is pressing to develop efficient antimicrobial alternatives. Nanoparticles, especially silver nanoparticles (AgNPs), are believed to be promising candidates to supplement or even replace antibiotics in some applications. Here, we propose a way to increase the antimicrobial efficiency of silver nanoparticles by using tea extracts (black, green, or red) for their synthesis. This allows for using lower concentrations of nanoparticles and obtaining the antimicrobial effect in a short time. We found that AgNPs synthesized using green tea extract (G-TeaNPs) are the most effective, causing approximately 80% bacterial cell death in Gram-negative bacteria within only 3 hours at a concentration of 0.1 mg mL-1, which is better than antibiotics. Ampicillin at the same concentration (0.1 mg mL-1) and within the same duration (3 h) causes only up to 40% decrease in the number of S. aureus and E. cloacae cells (non-resistant strains). The tested silver nanoparticles also have antifungal properties and are effective against C. auris and C. neoformans, which are difficult to eradicate using other means. We established that silver nanoparticles synthesized with tea extracts have higher antibacterial properties than silver nanoparticles alone. Such formulations using inexpensive tea extracts and lower concentrations of silver nanoparticles show a promising solution to fight various pathogens.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Mateusz Grotek
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
- Military University of Technology gen. Sylwestra Kaliskiego 2 00-908 Warsaw Poland
| | - Witold Adamkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Pumza Mente
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland +48 22 343 2071
| |
Collapse
|
5
|
Algarni A, Fayomi A, Al Garalleh H, Afandi A, Brindhadevi K, Pugazhendhi A. Nanofabrication synthesis and its role in antibacterial, anti-inflammatory, and anticoagulant activities of AgNPs synthesized by Mangifera indica bark extract. ENVIRONMENTAL RESEARCH 2023; 231:115983. [PMID: 37137456 DOI: 10.1016/j.envres.2023.115983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
The bio-based nanoparticles synthesis and assessment of their potential biomedical applications related research is rapidly emerging. The ability of an aqueous ethanolic bark extract of Mangifera indica to synthesize silver nanoparticles (AgNPs) as well as its antibacterial, anti-inflammatory, and anticancer activities were investigated in this study. Interestingly, the bark extract effectively synthesized the AgNPs, including an absorbance peak at 412 nm and sizes ranging from 56 to 89 nm. The Fourier Transform Infrared spectroscopy (FTIR) analysis confirmed that the presence of most essential functional groups belongs to the most bioactive compounds. Synthesized AgNPs showed fine antibacterial activity against the Urinary Tract Infection (UTI) causing bacterial pathogens such as Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus saprophyticus at 50 μg mL-1 concentrations. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against these pathogens were found as 12.5 ± 0.8 & 13 ± 0.6, 13.6 ± 0.5 & 14 ± 0.7, 11.5 ± 0.3 & 11.5 ± 0.4, 13 ± 0.8 & 13 ± 0.7, and 11.8 ± 0.4 & 12 ± 0.8 μg mL-1 respectively. Interestingly, this AgNPs also possesses outstanding anti-inflammatory and anticancer activities as studied against the egg albumin denaturation (85%) inhibition and MCF 7 (Michigan Cancer Foundation-7: breast cancer cells) cell line (cytotoxicity: 80.1%) at 50 μg mL-1 concentration. Similarly at 50 μg mL-1 concentration showed 75% of DPPH radical scavenging potential. These activities were dose dependent, and the findings suggest that the M. indica bark aqueous ethanolic extract synthesized AgNPs can be used as antibacterial, anti-inflammatory, and anticancer agents after in-vivo testing.
Collapse
Affiliation(s)
- Ali Algarni
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Aisha Fayomi
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Abdulkareem Afandi
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater 2022; 13:jfb13040242. [PMID: 36412883 PMCID: PMC9680418 DOI: 10.3390/jfb13040242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall's integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis.
Collapse
|
7
|
Gamma-Rays Induced Synthesis of Ag-Decorated ZnCo2O4–MoS2 Heterostructure as Novel Photocatalyst and Effective Antimicrobial Agent for Wastewater Treatment Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe development of novel semiconductors-based-photocatalysts is a promising strategy for addressing environmental pollution. In the present study, gamma irradiation was utilized to induce the synthesis of the exceptionally efficient Ag-decorated ZnCo2O4–MoS2 heterostructure. XRD and EDX analyses were verified the successful synthesis of Ag-decorated ZnCo2O4–MoS2 heterostructure. Also, SEM and HR-TEM images were illustrated the heterostructure nature of the synthesized photocatalyst in the nanoscale regime. The obtained optical bandgap values verified that photocatalyst possesses a narrow semiconductor bandgap. Further, the Ag-decorated ZnCo2O4–MoS2 heterostructure exhibited superior photodegradation potential towards MB (95.4% removal of the MB). The antimicrobial potency of the synthesized samples had been investigated through ZOI, MIC, growth curve assay, and the effect of UV illumination. Also, the antibiofilm behaviour has been studied. The antibacterial reaction mechanism had been estimated by membrane leakage assay and SEM imaging. The tested samples displayed a positive potency to a broad spectrum of bacteria like Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In particular, Ag–MoS2–ZnCo2O4 nanocomposite possessed the highest impact, followed by the spinal ZnCo2O4 NPs towards all the tested pathogenic microbes. In this assessment, the Ag-decorated ZnCo2O4–MoS2 heterostructure has been shown to be a promising candidate for wastewater treatment application.
Collapse
|
8
|
Magdy M, Elmowafy E, Elassal M, Ishak RA. Localized drug delivery to the middle ear: Recent advances and perspectives for the treatment of middle and inner ear diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Arshad H, Sadaf S, Hassan U. De-novo fabrication of sunlight irradiated silver nanoparticles and their efficacy against E. coli and S. epidermidis. Sci Rep 2022; 12:676. [PMID: 35027620 PMCID: PMC8758773 DOI: 10.1038/s41598-021-04674-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 01/26/2023] Open
Abstract
Silver nanoparticles (AgNPs) gained significant attention due to their activity against microbial pathogens, cancer cells, and viral particles etc. Traditional fabrication methods require hazardous chemicals as reducing agents and their usage and disposal pose a significant hazard to environmental ecosystem. Here, a de novo, robust, cost effective and an eco-friendly method is reported to fabricate AgNPs irradiated with sunlight (SL) while using Salvadora persica root extract (SPE) as reducing agent. Sunlight (SL) irradiated S. persica silver nanoparticles (SpNPs) i.e., SL-SpNPs were characterized using multiple techniques and their antibacterial efficacy was evaluated. The SL-SpNPs were synthesized in 10 min. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) analysis revealed their spherical morphology with a size range of 4.5-39.7 nm, while surface plasmon resonance (SPR) peaked at 425 nm. Fourier transform infrared spectroscopy (FTIR) analysis suggested that the reduction of SL-SpNPs was due to the presence of phytochemicals in the SPE. Furthermore, X-ray powder diffraction (P-XRD) pattern depicted the crystal structure of SL-SpNPs, hence proving the presence of AgNPs. Further the antibacterial studies were carried out against Escherichia coli (ATCC 11229) and Staphylococcus epidermidis (ATCC 12228) using Kirby Bauer method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for E. coli were determined to be 1.5 μg/mL and 3.0 μg/mL respectively while MIC and MBC values for S. epidermidis were found to be 12.5 μg/mL and 25 μg/mL respectively. The solar irradiation-based fabrication method and resulting SL-SpNPs can find their utility in many biomedical and environmental applications.
Collapse
Affiliation(s)
- Hammad Arshad
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- School of Biochemistry and Biotechnology, University of the Punjab, 54590, Lahore, Pakistan
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, 54590, Lahore, Pakistan
| | - Umer Hassan
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Nada HG, Ali HEA, El-Behery RR, Shanab SMM, Elshatoury EH. Nanoparticles Biosynthesized by Bacillus cereus Filtrate and Gamma Rays Enhancing Chlorella vulgaris Biomass and Lipid Production. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02122-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|