1
|
Asgari B, Burke JR, Quigley BL, Bradford G, Hatje E, Kuballa A, Katouli M. Identification of Virulence Genes Associated with Pathogenicity of Translocating Escherichia coli with Special Reference to the Type 6 Secretion System. Microorganisms 2024; 12:1851. [PMID: 39338525 PMCID: PMC11433802 DOI: 10.3390/microorganisms12091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Recent genomic characterisation of translocating Escherichia coli HMLN-1 isolated from mesenteric lymph nodes (MLNs) and blood of a patient with a fatal case of pancreatitis revealed the presence of a type 6 secretion system (T6SS) that was not present in non-translocating E. coli strains. This strain was also genomically similar to adherent-invasive E. coli (AIEC) LF82 pathotype. We aimed to identify the role of T6SS-1 in the pathogenesis of this strain and other pathogenic E. coli. The HMLN-1 strain was initially tested for the presence of six virulence genes (VGs) associated with AIEC strains and an iron sequestering system. Additionally, HMLN-1's interaction with a co-culture of Caco-2:HT29-MTX cells and its intra-macrophagic survival was evaluated. We subsequently screened a collection of 319 pathogenic E. coli strains isolated from patients with urinary tract infection (UTI), diarrhoea, inflammatory bowel disease (IBD) and septicaemia for the presence of T6SS-1 and its expression related to adhesion, invasion and translocation via the above co-culture of the intestinal cell lines. The results showed that HMLN-1 harboured four of the AIEC-associated VGs (dsbA, htrA, ompC and afaC). Screening of the pathogenic E. coli collection detected the presence of the T6SS-1 genes in septicaemic and UTI E. coli strains at a significantly higher level than diarrhoea and IBD strains (p < 0.0001). The high expression of T6SS-1 in E. coli HMLN-1 upon adhesion and invasion, as well as its high prevalence among extra-intestinal E. coli strains, suggests a role for T6SS-1 in the pathogenesis of translocating E. coli.
Collapse
Affiliation(s)
- Behnoush Asgari
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| | - Jarred R. Burke
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- Servatus Biopharmaceuticals, Coolum Beach, QLD 4573, Australia
| | - Bonnie L. Quigley
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- Thompson Institute, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Georgia Bradford
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| | - Eva Hatje
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Anna Kuballa
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
- School of Health, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Mohammad Katouli
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (B.A.); (J.R.B.); (B.L.Q.); (G.B.); (A.K.)
| |
Collapse
|
2
|
Sun T, Liu X, Su Y, Wang Z, Cheng B, Dong N, Wang J, Shan A. The efficacy of anti-proteolytic peptide R7I in intestinal inflammation, function, microbiota, and metabolites by multi-omics analysis in murine bacterial enteritis. Bioeng Transl Med 2023; 8:e10446. [PMID: 36925697 PMCID: PMC10013768 DOI: 10.1002/btm2.10446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Increased antibiotic resistance poses a major limitation in tackling inflammatory bowel disease and presents a large challenge for global health care. Antimicrobial peptides (AMPs) are a potential class of antimicrobial agents. Here, we have designed the potential oral route for antimicrobial peptide R7I with anti-proteolytic properties to deal with bacterial enteritis in mice. The results revealed that R7I protected the liver and gut from damage caused by inflammation. RNA-Seq analysis indicated that R7I promoted digestion and absorption in the small intestine by upregulating transmembrane transporter activity, lipid and small molecule metabolic processes and other pathways, in addition to upregulating hepatic steroid biosynthesis and fatty acid degradation. For the gut microbiota, Clostridia were significantly reduced in the R7I-treated group, and Odoribacteraceae, an efficient isoalloLCA-synthesizing strain, was the main dominant strain, protecting the gut from potential pathogens. In addition, we further discovered that R7I reduced the accumulation of negative organic acid metabolites. Overall, R7I exerted better therapeutic and immunomodulatory potential in the bacterial enteritis model, greatly reduced the risk of disease onset, and provided a reference for the in vivo application of antimicrobial peptides.
Collapse
Affiliation(s)
- Taotao Sun
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Xuesheng Liu
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Yunzhe Su
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Zihang Wang
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Baojing Cheng
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Jiajun Wang
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
3
|
Zheng L, Duan SL, Dai YC, Wu SC. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J Clin Cases 2022; 10:11671-11689. [PMID: 36405271 PMCID: PMC9669839 DOI: 10.12998/wjcc.v10.i32.11671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota imbalances play an important role in inflammatory bowel disease (IBD), but no single pathogenic microorganism critical to IBD that is specific to the IBD terminal ileum mucosa or can invade intestinal epithelial cells has been found. Invasive Escherichia coli (E. coli) adhesion to macrophages is considered to be closely related to the pathogenesis of inflammatory bowel disease. Further study of the specific biological characteristics of adherent invasive E. coli (AIEC) may contribute to a further understanding of IBD pathogenesis. This review explores the relationship between AIEC and the intestinal immune system, discusses the prevalence and relevance of AIEC in Crohn's disease and ulcerative colitis patients, and describes the relationship between AIEC and the disease site, activity, and postoperative recurrence. Finally, we highlight potential therapeutic strategies to attenuate AIEC colonization in the intestinal mucosa, including the use of phage therapy, antibiotics, and anti-adhesion molecules. These strategies may open up new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 322000, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, Gansu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
4
|
Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines 2022; 10:biomedicines10092245. [PMID: 36140346 PMCID: PMC9496071 DOI: 10.3390/biomedicines10092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in the pathogenesis of inflammatory bowel disease (IBD). We evaluated the ability of six live biotherapeutic products (LBPs) to inhibit the interaction of an AIEC strain to three cell lines representing human gut epithelium. Co-inoculation of LBPs with AIEC showed a reduction in adhesion (up to 73%) and invasion of AIEC (up to 89%). Pre-inoculation of LBPs in HT-29-MTX and Caco-2 cells before challenging with AIEC further reduced the adhesion and invasion of the AIEC, with three LBPs showing significantly (p < 0.0001) higher efficiency in reducing the adhesion of AIEC. In co-inoculation experiments, the highest reduction in adhesion (73%) of AIEC was observed in HT-29-MTX cells, whereas the highest reduction in invasion (89%) was seen in HT-29-MTX and the co-culture of cells. Pre-inoculation of LBPs further reduced the invasion of AIEC with highest reduction (97%) observed in co-culture of cells. Our results indicated that whilst there were differences in the efficacy of LBPs, they all reduced interaction of AIEC with cell lines representing gut epithelium. Their efficiency was higher when they were pre-inoculated onto the cells, suggesting their potential as candidates for alleviating pathogenesis of AIEC in patients with IBD.
Collapse
|
5
|
López-Siles M, Camprubí-Font C, Gómez Del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, Martinez-Medina M. Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Front Immunol 2022; 13:748839. [PMID: 35359974 PMCID: PMC8960851 DOI: 10.3389/fimmu.2022.748839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Background & Aims Adherent-invasive E. coli (AIEC) has largely been implicated in the pathogenesis of Crohn’s disease (CD). E. coli strains with similar genetic backgrounds and virulence genes profiles have been associated with other intestinal disorders, such as ulcerative colitis (UC), colorectal cancer (CRC), and coeliac disease (CeD), but the role of AIEC in these diseases remains unexplored. We aimed to assess the distribution, abundance, and pathogenic features of AIEC in UC, CRC, and CeD. Methods The AIEC phenotype was investigated in 4,233 E. coli isolated from the ileum and colon of 14 UC and 15 CRC patients and in 38 fecal E. coli strains obtained from 17 CeD and 10 healthy (H) children. AIEC prevalence and abundance were compared with previous data from CD patients and H controls. Clonality, virulence gene carriage, and phylogenetic origin were determined for the AIEC identified. Results In UC, AIEC prevalence was intermediate between CD and H subjects (UC: 35.7%, CD: 55.0%, H: 21.4%), and similar to CD patients with colonic disease (C-CD: 40.0%). In CRC, the prevalence was lower (6.7%) than these groups. In patients with AIEC, the estimated abundance was similar across all intestinal conditions. All AIEC strains isolated from UC and CRC belonged to the B1 phylogroup, except for a strain of the A phylogroup, and the majority (75% of clonally distinct AIEC) harbored the Afa/Dr operon and the cdt gene. None of the E. coli isolated from the CeD cohort were AIEC. Nonetheless, E. coli strains isolated from active CeD patients showed higher invasion indices than those isolated from H and inactive CeD pediatric patients. Conclusion We support the hypothesis that AIEC-like strains can be involved not only in CD but also in UC. Further works are needed to study the virulence particularities of these groups of strains and to determine if there is a causative link between AIEC and UC. In contrast, we rule out the possible association of AIEC with CRC. In addition, to further study the E. coli strains in CeD for their possible pathogenic role would be of interest.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Carla Camprubí-Font
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Eva M Gómez Del Pulgar
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | - Miriam Sabat Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | | |
Collapse
|
6
|
Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci 2021; 22:9922. [PMID: 34576083 PMCID: PMC8468683 DOI: 10.3390/ijms22189922] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli are remarkably versatile microorganisms and important members of the normal intestinal microbiota of humans and animals. This harmless commensal organism can acquire a mixture of comprehensive mobile genetic elements that contain genes encoding virulence factors, becoming an emerging human pathogen capable of causing a broad spectrum of intestinal and extraintestinal diseases. Nine definite enteric E. coli pathotypes have been well characterized, causing diseases ranging from various gastrointestinal disorders to urinary tract infections. These pathotypes employ many virulence factors and effectors subverting the functions of host cells to mediate their virulence and pathogenesis. This review summarizes new developments in our understanding of diverse virulence factors associated with encoding genes used by different pathotypes of enteric pathogenic E. coli to cause intestinal and extraintestinal diseases in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
7
|
de Sousa Figueiredo MB, Pradel E, George F, Mahieux S, Houcke I, Pottier M, Fradin C, Neut C, Daniel C, Bongiovanni A, Foligné B, Titécat M. Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms 2021; 9:microorganisms9091823. [PMID: 34576719 PMCID: PMC8465672 DOI: 10.3390/microorganisms9091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.
Collapse
Affiliation(s)
- Maria Beatriz de Sousa Figueiredo
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Séverine Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Isabelle Houcke
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Muriel Pottier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Chantal Fradin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE, F-59000 Lille, France;
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France;
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| |
Collapse
|