1
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
2
|
Sharma S, Banerjee T, Yadav G, Kumar A. Susceptibility profile of bla OXA-23 and metallo-β-lactamases co-harbouring isolates of carbapenem resistant Acinetobacter baumannii (CRAB) against standard drugs and combinations. Front Cell Infect Microbiol 2023; 12:1068840. [PMID: 36683677 PMCID: PMC9853021 DOI: 10.3389/fcimb.2022.1068840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background The rapid emergence of carbapenem resistant Acinetobacter baumannii (CRAB) has resulted in an alarming situation worldwide. Realizing the dearth of literature on susceptibility of CRAB in genetic context in the developing region, this study was performed to determine the susceptibility profile against standard drugs/combinations and the association of in-vitro drug synergy with the prevalent molecular determinants. Methods and findings A total of 356 clinical isolates of A. baumannii were studied. Confirmation of the isolates was done by amplifying recA and ITS region genes. Susceptibility against standard drugs was tested by Kirby Bauer disc diffusion. Minimum inhibitory concentration (MIC), MIC50 and MIC90 values against imipenem, meropenem, doripenem, ampicillin/sulbactam, minocycline, amikacin, polymyxin B, colistin and tigecycline was tested as per guidelines. Genes encoding enzymes classes A (bla GES, bla IMI/NMC-A, bla SME, bla KPC), B (bla IMP, bla VIM, bla NDM) and D (bla OXA-51, bla OXA-23 and bla OXA-58) were detected by multiplex polymerase chain reaction. Synergy against meropenem-sulbactam and meropenem-colistin combinations was done by checkerboard MIC method. Correlation of drug synergy and carbapenemase encoding genes was statistically analyzed. Results Of the total, resistance above 90% was noted against gentamicin, ciprofloxacin, levofloxacin, ceftazidime, cefepime, ceftriaxone, cotrimoxazole and piperacillin/tazobactam. By MIC, resistance rates from highest to lowest was seen against imipenem 89.04% (n=317), amikacin 80.33% (n=286), meropenem 79.49% (n=283), doripenem 77.80% (n=277), ampicillin/sulbactam 71.62% (n=255), tigecycline 55.61% (n=198), minocycline 14.04% (n=50), polymyxin B 10.11% (n=36), and colistin 2.52% (n=9). CRAB was 317 (89.04%), 81.46% (n=290) were multidrug resistant and 13.48% (n=48) were extensively drug resistant. All the CRAB isolates harboured bla OXA-51 gene (100%) and 94% (n=298) bla OXA-23 gene. The bla IMP gene was most prevalent 70.03% (n=222) followed by bla NDM, 59.62% (n=189). Majority (87.69%, 278) were co-producers of classes D and B carbapenemases, bla OXA-23 with bla IMP and bla NDM being the commonest. Synergy with meropenem-sulbactam and meropenem-colistin was 47% and 57% respectively. Reduced synergy (p= <0.0001) was noted for those harbouring bla OXA-51+blaOXA-23with bla NDM gene alone or co-producers. Conclusion Presence of bla NDM gene was a significant cause of synergy loss in meropenem-sulbactam and meropenem-colistin. In bla NDM endemic regions, tigecycline, minocycline and polymyxins could be viable options against CRAB isolates with more than one carbapenemase encoding genes.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ghanshyam Yadav
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, Sy SKB. Prediction of Tissue Exposures of Meropenem, Colistin, and Sulbactam in Pediatrics Using Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2022; 61:1427-1441. [PMID: 35947360 DOI: 10.1007/s40262-022-01161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The combination of polymyxins, meropenem, and sulbactam demonstrated efficacy against multi-drug-resistant bacillus Acinetobacter baumannii. These three antibiotics are commonly used against major blood, skin, lung, and heart muscle infections. OBJECTIVE The objective of this study was to predict drug disposition and extrapolate the efficacy in these tissues using a physiologically based pharmacokinetic modeling approach that linked drug exposures to their target pharmacodynamic indices associated with antimicrobial activities against A. baumannii. METHODS An adult physiologically based pharmacokinetic model was developed for meropenem, colistin, and sulbactam and scaled to pediatrics accounting for both renal and non-renal clearances. The model reliability was evaluated by comparing simulated plasma and tissue drug exposures to observed data. Target pharmacodynamic indices were used to evaluate whether pediatric and adult dosing regimens provided sufficient coverage. RESULTS The modeled plasma drug exposures in adults and pediatric patients were consistent with reported literature data. The mean fold errors for meropenem, colistin, and sulbactam were in the range of 0.710-1.37, 0.981-1.47, and 0.647-1.39, respectively. Simulated exposures in the blood, skin, lung, and heart were consistent with reported penetration rates. In a virtual pediatric population aged from 2 to < 18 years, the interpretive breakpoints were achieved in 85-90% of subjects for their targeted pharmacodynamic indices after administration of pediatric dosing regimens consisting of 30 mg/kg of meropenem, and 40 mg/kg of sulbactam three times daily as a 3-h or continuous infusion and 5 mg/kg/day of colistin base activity. CONCLUSIONS The physiologically based pharmacokinetic modeling supports pediatric dosing regimens of meropenem/colistin/sulbactam in a co-administration setting against infections in the blood, lung, skin, and heart tissues due to A. baumannii.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, NJ, USA
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
4
|
Ye Y, Kong Y, Ma J, Shi G. Carbapenem-Resistant Gram-Negative Bacteria-Related Healthcare-Associated Ventriculitis and Meningitis: Antimicrobial Resistance of the Pathogens, Treatment, and Outcome. Microbiol Spectr 2022; 10:e0025322. [PMID: 35467409 PMCID: PMC9241620 DOI: 10.1128/spectrum.00253-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Gram-negative bacteria (CRGNB)-related health care-associated ventriculitis and meningitis (HCAVM) is dangerous. We aimed to report the antimicrobial resistance of the pathogens, treatment, and outcome. All cases with CRGNB-related HCAVM in2012-2020 were recruited. Antimicrobial agents were classified as active, untested, or inactive using antimicrobial susceptibility tests. The treatment stage was classified as empirical or targeted according to the report of pathogens. The treatment effect was classified as ineffective or effective according to HCAVM-related parameters. Overall, 92 cases were recruited. For most antimicrobial agents, the resistance rate was higher than 70.0%. The polymyxin resistance rate was the lowest at 11.6%. The chloramphenicol, trimethoprim-sulfamethoxazole, amikacin, levofloxacin, and tetracycline resistance rates were relatively low, ranging from 21.1% to 64.1%. The meropenem resistance rate was 81.9%. There was no significant trend for any antimicrobial agent tested. Meropenem was the most common antimicrobial agent used in empirical treatment; trimethoprim-sulfamethoxazole and polymyxin were the most used active antimicrobial agents, and meropenem/sulbactam and polymyxin were the most used untested antimicrobial agents in targeted treatment. In total, 42 (45.7%) cases received ineffective treatments. The ineffective treatment rate of cases that received active antimicrobial agents was lower than that of cases that received untested antimicrobial agents and cases that received inactive antimicrobial agents (29.3% [12/41] versus 46.2% [18/39] versus 100.0% [12/12], P < 0.001). Antimicrobial resistance was prevalent but without increasing trends. Active antimicrobial agents are necessary. Additionally, untested antimicrobial agents, including meropenem/sulbactam and polymyxin, might be optional. Inactive antimicrobial agents must be replaced. IMPORTANCE Carbapenem-resistant Gram-negative bacteria-related health care-associated ventriculitis and meningitis is a clinical threat because of the poor outcome and challenges in treatment. We reached several conclusions: (i) the antimicrobial resistance of pathogens is severe, and some antimicrobial agents represented by polymyxin are optional according to the antimicrobial susceptibility tests; (ii) in the background that the portion of carbapenems resistance in Gram-negative bacteria is increasing, there is no increasing trend for the antimicrobial resistance of carbapenem-resistant Gram-negative bacteria in the 9-year study; (iii) meropenem is the main antimicrobial agent in treatment, and trimethoprim-sulfamethoxazole, tigecycline, polymyxin, and meropenem/sulbactam are commonly used in the targeted treatment; (iv) the treatment effect was poor and affected by the treatment: timely active antimicrobial agents should be given. And untested antimicrobial agents represented by polymyxin and meropenem/sulbactam might be optional. Inactive antimicrobial agents must be replaced.
Collapse
Affiliation(s)
- Yi Ye
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yueyue Kong
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Ma
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guangzhi Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection 2022; 50:569-581. [PMID: 34982411 DOI: 10.1007/s15010-021-01748-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Pending approval of new antimicrobials, synergistic combinations are the only treatment option against pandrug-resistant A. baumannii (PDRAB). Considering the lack of a standardized methodology, the aim of this manuscript is to systematically review the methodology and discuss unique considerations for assessing antimicrobial combinations against PDRAB. METHODS Post-hoc analysis of a systematic review (conducted in PubMed and Scopus from inception to April 2021) of studies evaluating antimicrobial combination against A. baumannii, based on antimicrobials that are inactive in vitro alone. RESULTS Eighty-four publications were reviewed, using a variety of synergy testing methods, including; gradient-based methods (n = 11), disk-based methods (n = 6), agar dilution (n = 2), checkerboard assay (n = 44), time-kill assay (n = 50), dynamic in vitro PK/PD models (n = 6), semi-mechanistic PK/PD models (n = 5), and in vivo animal models (n = 11). Several variations in definitions of synergy and interpretation of each method were observed and are discussed. Challenges related to testing combinations of antimicrobials that are inactive alone (with regards to concentrations at which the combinations are assessed), as well as other considerations (assessment of stasis vs killing, clinical relevance of re-growth in vitro after initial killing, role of in vitro vs in vivo conditions, challenges of clinical testing of antimicrobial combinations against PDRAB infections) are discussed. CONCLUSION This review demonstrates the need for consensus on a standardized methodology and clinically relevant definitions for synergy. Modifications in the methodology and definitions of synergy as well as a roadmap for further development of antimicrobial combinations against PDRAB are proposed.
Collapse
|
6
|
Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10111344. [PMID: 34827282 PMCID: PMC8615225 DOI: 10.3390/antibiotics10111344] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial combinations are at the moment the only potential treatment option for pandrug-resistant A. baumannii. A systematic review was conducted in PubMed and Scopus for studies reporting the activity of antimicrobial combinations against A. baumannii resistant to all components of the combination. The clinical relevance of synergistic combinations was assessed based on concentrations achieving synergy and PK/PD models. Eighty-four studies were retrieved including 818 eligible isolates. A variety of combinations (n = 141 double, n = 9 triple) were tested, with a variety of methods. Polymyxin-based combinations were the most studied, either as double or triple combinations with cell-wall acting agents (including sulbactam, carbapenems, glycopeptides), rifamycins and fosfomycin. Non-polymyxin combinations were predominantly based on rifampicin, fosfomycin, sulbactam and avibactam. Several combinations were synergistic at clinically relevant concentrations, while triple combinations appeared more active than the double ones. However, no combination was consistently synergistic against all strains tested. Notably, several studies reported synergy but at concentrations unlikely to be clinically relevant, or the concentration that synergy was observed was unclear. Selecting the most appropriate combinations is likely strain-specific and should be guided by in vitro synergy evaluation. Furthermore, there is an urgent need for clinical studies on the efficacy and safety of such combinations.
Collapse
|