1
|
Pranada AB, Cicatka M, Heß C, Karasek J. Diagnostic performance of an automated robot for MALDI target preparation in microbial identification. J Clin Microbiol 2024; 62:e0043424. [PMID: 39297624 PMCID: PMC11481498 DOI: 10.1128/jcm.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/15/2024] [Indexed: 10/17/2024] Open
Abstract
The MBT Pathfinder is an automated colony-picking robot designed for efficient sample preparation in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This article presents results from three key experiments evaluating the instrument's performance in conjunction with MALDI Biotyper instrument. The method comparison experiment assessed its clinical performance, demonstrating comparable results with gram-positive, gram-negative, and anaerobic bacteria (scores larger than 2.00) and superior performance over simple direct yeast transfer (score: 1.80) when compared to samples prepared manually. The repeatability experiment confirmed consistent performance over multiple days and labs (average log score: 2.12, std. deviation: 0.59). The challenge panel experiment showcased its consistent and accurate performance across various samples and settings, yielding average scores between 1.76 and 2.19. These findings underline the MBT Pathfinder as a reliable and efficient tool for MALDI-TOF mass spectrometry sample preparation in clinical and research applications.
Collapse
Affiliation(s)
- Arthur B. Pranada
- Division of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | - Michal Cicatka
- Department of Telecommunication, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Clara Heß
- Division of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | - Jan Karasek
- R&D Automation, Microbiology & Diagnostics, Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| |
Collapse
|
2
|
Kritikos A, Prod'hom G, Jacot D, Croxatto A, Greub G. The Impact of Laboratory Automation on the Time to Urine Microbiological Results: A Five-Year Retrospective Study. Diagnostics (Basel) 2024; 14:1392. [PMID: 39001282 PMCID: PMC11240889 DOI: 10.3390/diagnostics14131392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Total laboratory automation (TLA) is a valuable component of microbiology laboratories and a growing number of publications suggest the potential impact of automation in terms of analysis standardization, streaking quality, and the turnaround time (TAT). The aim of this project was to perform a detailed investigation of the impact of TLA on the workflow of commonly treated specimens such as urine. This is a retrospective observational study comparing two time periods (pre TLA versus post TLA) for urine specimen culture processing. A total of 35,864 urine specimens were plated during the pre-TLA period and 47,283 were plated during the post-TLA period. The median time from streaking to identification decreased from 22.3 h pre TLA to 21.4 h post TLA (p < 0.001), and the median time from streaking to final validation of the report decreased from 24.3 h pre TLA to 23 h post TLA (p < 0.001). Further analysis revealed that the observed differences in TAT were mainly driven by the contaminated and positive samples. Our findings demonstrate that TLA has the potential to decrease turnaround times of samples in a laboratory. Nevertheless, changes in laboratory workflow (such as extended opening hours for plate reading and antibiotic susceptibility testing or decreased incubation times) might further maximize the efficiency of TLA and optimize TATs.
Collapse
Affiliation(s)
- Antonios Kritikos
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
- Unité d'Infectiologie, Département de Médecine, Hôpital de Fribourg HFR, 1752 Villars-sur-Glâne, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| | - Damien Jacot
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| | - Antony Croxatto
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
- ADMED Microbiology, 2000 La Chaux-de-Fonds, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV), University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
3
|
Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024; 12:322. [PMID: 38399726 PMCID: PMC10892259 DOI: 10.3390/microorganisms12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | | |
Collapse
|
4
|
Pham ML, Van Horn K, Zarate E, Pickering E, Murphy C, Bryant K. A multicenter evaluation of Copan's Colibrí™, an automated instrument for MALDI TOF MS target application for bacterial identification. Diagn Microbiol Infect Dis 2024; 108:116098. [PMID: 37890307 DOI: 10.1016/j.diagmicrobio.2023.116098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The Colibrí™ is a new instrument that automates picking and placement of colonies on target plates for MALDI identification. This study compared the performance of the Colibrí™ to standard manual spotting using the VITEK® MS for bacterial identification. Colonies were selected from cultures of urine, wound, respiratory, and positive blood cultures. The Colibrí™ sampled the colonies, transferred them to a MALDI target slide, and overlayed each spot with matrix. Manual spotting was then performed using the same or similar colonies. A total of 444 bacteria were compared. Identification was achieved with both methods for 432 organisms with only 2 discrepant results, overall agreement of 99.54%. Twelve organisms (2.70%) gave no identification using Colibrí™. The Colibrí™ provides automation to a manual process with a high accuracy. Use of the Colibrí™ instrumentation provides an opportunity to reallocate technologist time to more complicated tasks and provides complete traceability from plating to organism identification.
Collapse
Affiliation(s)
- My Lien Pham
- Kaiser Permanente, Southern California Permanente Medical Group, Regional Reference Laboratories, Chino Hills, CA, USA
| | - Kenneth Van Horn
- Kaiser Permanente, Southern California Permanente Medical Group, Regional Reference Laboratories, Chino Hills, CA, USA.
| | | | | | | | - Kendall Bryant
- Kaiser Permanente, Airport Way Regional Laboratory, Portland, OR, USA
| |
Collapse
|
5
|
Idelevich EA, Nedow B, Vollmer M, Becker K. Evaluation of a Novel Benchtop Tool for Acceleration of Sample Preparation for MALDI-TOF Mass Spectrometry. J Clin Microbiol 2023; 61:e0021223. [PMID: 37493547 PMCID: PMC10446855 DOI: 10.1128/jcm.00212-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
During the past decade, MALDI-TOF mass spectrometry (MS) has become a standard method for identification of bacteria and yeasts. Nonetheless, further optimization of the identification process is important to streamline workflows and save resources. This study evaluated the application of a multipurpose benchtop tool, MBT FAST Shuttle IVD, for accelerated drying of liquid assay components (matrix, formic acid, and/or sample) on a MALDI target. A total of 50 bacterial and fungal isolates were subjected to three different sample preparation procedures prior to the identification by MALDI-TOF MS: direct transfer (DT), extended direct transfer (eDT), and protein extraction (PE). Compared to conventional drying at room temperature, the preparation was performed with standardized heating of the MALDI target on the MBT FAST Shuttle. During DT, eDT, and PE, 56.7% (P < 0.001), 56.8% (P < 0.001), and 52.8% (P < 0.001) of time for matrix drying were saved by using the MBT FAST Shuttle, respectively. Applying the MBT FAST Shuttle, 57.5% (P < 0.001) of time for drying of formic acid were saved for eDT and 57.5% (P < 0.001) of time for sample drying were saved for PE. A significant improvement of the identification rates and scores was observed with MBT FAST Shuttle for eDT (P = 0.001) and PE (P = 0.008) methods, while the effect on identification quality for DT was not statistically significant (P = 0.16). In conclusion, the use of the MBT FAST Shuttle shortened the drying time of assay components by about a half for all preparation methods. Moreover, positive effect on identification success was observed.
Collapse
Affiliation(s)
- Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Betty Nedow
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Mencacci A, De Socio GV, Pirelli E, Bondi P, Cenci E. Laboratory automation, informatics, and artificial intelligence: current and future perspectives in clinical microbiology. Front Cell Infect Microbiol 2023; 13:1188684. [PMID: 37441239 PMCID: PMC10333692 DOI: 10.3389/fcimb.2023.1188684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Clinical diagnostic laboratories produce one product-information-and for this to be valuable, the information must be clinically relevant, accurate, and timely. Although diagnostic information can clearly improve patient outcomes and decrease healthcare costs, technological challenges and laboratory workflow practices affect the timeliness and clinical value of diagnostics. This article will examine how prioritizing laboratory practices in a patient-oriented approach can be used to optimize technology advances for improved patient care.
Collapse
Affiliation(s)
- Antonella Mencacci
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Microbiology, Perugia General Hospital, Perugia, Italy
| | | | - Eleonora Pirelli
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Bondi
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Microbiology, Perugia General Hospital, Perugia, Italy
| |
Collapse
|
7
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Archakov AI. Cell Proteomic Footprinting: Advances in the Quality of Cellular and Cell-Derived Cancer Vaccines. Pharmaceutics 2023; 15:661. [PMID: 36839983 PMCID: PMC9963030 DOI: 10.3390/pharmaceutics15020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In omics sciences, many compounds are measured simultaneously in a sample in a single run. Such analytical performance opens up prospects for improving cellular cancer vaccines and other cell-based immunotherapeutics. This article provides an overview of proteomics technology, known as cell proteomic footprinting. The molecular phenotype of cells is highly variable, and their antigenic profile is affected by many factors, including cell isolation from the tissue, cell cultivation conditions, and storage procedures. This makes the therapeutic properties of cells, including those used in vaccines, unpredictable. Cell proteomic footprinting makes it possible to obtain controlled cell products. Namely, this technology facilitates the cell authentication and quality control of cells regarding their molecular phenotype, which is directly connected with the antigenic properties of cell products. Protocols for cell proteomic footprinting with their crucial moments, footprint processing, and recommendations for the implementation of this technology are described in this paper. The provided footprints in this paper and program source code for their processing contribute to the fast implementation of this technology in the development and manufacturing of cell-based immunotherapeutics.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|