1
|
Sharma P, Gupta RK, Anthwal D, Dass M, Yadav R, Behera A, Sethi S, Singhal R, Dhooria S, Aggarwal AN, Haldar S. Evaluation of Mycobacterium tuberculosis derived cell-free DNA using pleural fluid and paired plasma samples for the diagnosis of pleural tuberculosis. Tuberculosis (Edinb) 2023; 142:102369. [PMID: 37536090 DOI: 10.1016/j.tube.2023.102369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 08/05/2023]
Abstract
Pleural tuberculosis (pTB) is a grave clinical challenge. A novel cell-free M. tuberculosis DNA (cfM.tb-DNA) probe-based-qPCR assay was developed for the diagnosis of pTB. Total cell-free DNA was extracted from pleural fluid (PF) and paired plasma samples and cfM.tb-DNA was quantified by probe-based qPCR targeting devR (109-bp) gene of M. tuberculosis in patients with pleural effusion. Patient categorization was done using 'Composite-Reference-Standard' formulated for the study. Assay cut-offs were determined from samples in the 'Development set' (n = 17; 'Definite & Probable' pTB; n = 9 and 'Non-TB'; n = 8) by ROC-curve analysis and applied to 'Validation set' (n = 112; 'Definite' pTB; n = 8, 'Probable' pTB; n = 34, 'Possible' pTB; n = 28 and 'Non-TB'; n = 42). cfM.tb-DNA qPCR had a sensitivity of 62.5% (95%CI; 24.4,91.4) in 'Definite' pTB category and 59.5% (95%CI; 43.2,74.3) in 'Definite & Probable' pTB category with 95.2% (95%CI; 83.8,99.4) specificity using PF. In plasma (n = 85), the assay had a sub-optimal sensitivity of 7.6% (95%CI; 0.95,25.1) with 88.2% (95%CI; 72.5,96.7) specificity in 'Definite & Probable' pTB group. Xpert MTB/RIF assay detected only six-samples in the 'Validation set'. Logistic regression analysis indicated that PF-cfM.tb-DNA qPCR provided incremental advantage over existing pTB diagnostic algorithms. To the best of our knowledge, this is the first report describing the utility of cfM.tb-DNA for pTB diagnosis in India.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Gupta
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Anthwal
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Dass
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Yadav
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Behera
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Sethi
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritu Singhal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sagarika Haldar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Pillay S, de Vos M, Derendinger B, Streicher EM, Dolby T, Scott LA, Steinhobel AD, Warren RM, Theron G. Non-actionable Results, Accuracy, and Effect of First- and Second-line Line Probe Assays for Diagnosing Drug-Resistant Tuberculosis, Including on Smear-Negative Specimens, in a High-Volume Laboratory. Clin Infect Dis 2023; 76:e920-e929. [PMID: 35788278 PMCID: PMC7614164 DOI: 10.1093/cid/ciac556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rapid tuberculosis (TB) drug susceptibility testing (DST) is crucial. Genotype MTBDRsl is a widely deployed World Health Organization (WHO)-endorsed assay. Programmatic performance data, including non-actionable results from smear-negative sputum, are scarce. METHODS Sputa from Xpert MTB/RIF individuals (n = 951) were routinely-tested using Genotype MTBDRplus and MTBDRsl (both version 2). Phenotypic DST was the second-line drug reference standard. Discrepant results underwent Sanger sequencing. FINDINGS 89% (849 of 951) of individuals were culture-positive (56%, 476 of 849 smear-negative). MTBDRplus had at least 1 nonactionable result (control and/or TB-detection bands absent or invalid, precluding resistance reporting) in 19% (92 of 476) of smear-negatives; for MTBDRsl, 40% (171 of 427) were nonactionable (28%, 120 of 427 false-negative TB; 17%, 51 of 427 indeterminate). In smear-negatives, MTBDRsl sensitivity for fluoroquinolones was 84% (95% confidence interval, 67%-93), 81% (54%-95%) for second-line injectable drugs, and 57% (28%-82%) for both. Specificities were 93% (89%-98%), 88% (81%-93%), and 97% (91%-99%), respectively. Twenty-three percent (172 of 746) of Xpert rifampicin-resistant specimens were MTBDRplus isoniazid-susceptible. Days-to-second-line-susceptibility reporting with the programmatic advent of MTBDRsl improved (6 [5-7] vs 37 [35-46]; P < .001). CONCLUSIONS MTBDRsl did not generate a result in 4 of 10 smear-negatives, resulting in substantial missed resistance. However, if MTBDRsl generates an actionable result, that is accurate in ruling-in resistance. Isoniazid DST remains crucial. This study provides real-world, direct, second-line susceptibility testing performance data on non-actionable results (that, if unaccounted for, cause an overestimation of test utility), accuracy, and care cascade impact.
Collapse
Affiliation(s)
- Samantha Pillay
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - Margaretha de Vos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Brigitta Derendinger
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth Maria Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Tania Dolby
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - Leeré Ann Scott
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Amy Debra Steinhobel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Rob Mark Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Murphy C, Duffy F, McCormick F, O'Donnell S, Fitzpatrick F, Humphreys H. Workload for infection prevention and control teams in preventing nosocomial tuberculosis. An underestimated burden. J Hosp Infect 2022; 129:115-116. [PMID: 35961479 DOI: 10.1016/j.jhin.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 10/31/2022]
Affiliation(s)
- C Murphy
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - F Duffy
- Infection Prevention and Control Department, Beaumont Hospital, Dublin, Ireland
| | - F McCormick
- Infection Prevention and Control Department, Beaumont Hospital, Dublin, Ireland
| | - S O'Donnell
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - F Fitzpatrick
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - H Humphreys
- Department of Clinical Microbiology, the Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
4
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Diagnosis of tuberculous pleural effusions: A review. Respir Med 2021; 188:106607. [PMID: 34536698 DOI: 10.1016/j.rmed.2021.106607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023]
Abstract
Tuberculous pleural effusion (TPE) is the second most common presentation of extrapulmonary tuberculosis. The paucibacillary nature of the effusion poses diagnostic challenges. Biomarkers like adenosine deaminase and interferon-γ have some utility for diagnosing TPEs, as do cartridge-based polymerase chain reaction (PCR) methods. When these fluid studies remain indeterminate, pleural biopsies must be performed to confirm the diagnosis. This review article elaborates on the scientific evidence available for various diagnostic tests and presents a practical approach to the diagnosis of TPEs.
Collapse
|
6
|
Ramos-Sono D, Laureano R, Rueda D, Gilman RH, La Rosa A, Ruiz J, León R, Sheen P, Zimic M. An electrochemical biosensor for the detection of Mycobacterium tuberculosis DNA from sputum and urine samples. PLoS One 2020; 15:e0241067. [PMID: 33112923 PMCID: PMC7592764 DOI: 10.1371/journal.pone.0241067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is a major global public health problem with high mortality and morbidity. In low-middle income countries (LMIC) a large number of respiratory symptomatic cases that require TB screening per year demands more accurate, fast and affordable testing for TB diagnostics. Sputum smear is the initial screening test in LMICs, however, its sensitivity is limited in patients with low sputum bacilli load. The same limitation is observed in the currently available molecular tests. We designed, standardized and evaluated an electrochemical biosensor that detects the highly specific DNA insertion element 6110 (IS6110). A PCR amplified DNA product is hybridized on the surface of the working electrode built on FTO-Glass with immobilized specific DNA probes, after which cyclic voltammetry is performed with an Ag/AgCl reference electrode and a platinum counter electrode. The response of the sensor was measured by the ratio (cathodic peak current of the hybridized sensor) / (cathodic peak current of the non-hybridized sensor). We tested the biosensor, using positive hybridization control sequences, genomic DNA extracted from M. tuberculosis strains and sputum of TB patients, and extracted DNA from the urine of healthy controls spiked with M. tuberculosis DNA. This biosensor was effective for the detection of M. tuberculosis DNA with a detection limit of 16 fM in sputum sample and 1 fM in spiked urine samples. The low cost and the relatively brief duration of the assay make this an important TB screening tool in the fight against tuberculosis.
Collapse
Affiliation(s)
- Daniel Ramos-Sono
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Raúl Laureano
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniel Rueda
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Adolfo La Rosa
- Laboratorio de Electroquímica, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú
| | - Jesús Ruiz
- Laboratorio de Metalurgia y Ciencias de Materiales, NDT Innovations, Inc., Lima, Perú
| | - Raúl León
- Laboratorio de Metalurgia y Ciencias de Materiales, NDT Innovations, Inc., Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
7
|
Rishi E, Rishi P, Therese KL, Ramasubban G, Biswas J, Sharma T, Bhende P, Susvar P, Agarwal M, George AE, Delhiwala K, Sharma VR. Culture and Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Proven Mycobacterium Tuberculosis Endophthalmitis: A Case Series. Ocul Immunol Inflamm 2016; 26:220-227. [PMID: 27598944 DOI: 10.1080/09273948.2016.1207786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To report early confirmation of Mycobacterium tuberculosis (MTB) endophthalmitis by detection of 85B mRNA in vitreous by a reverse transcriptase polymerase chain reaction (RT-PCR) technique. METHODS Retrospective, interventional case series of 5 patients with MTB endogenous endophthalmitis. Vitreous aspirate was subjected to Ziehl-Neelsen (ZN) staining, BACTEC MicroMGIT culture, RT-PCR targeting the 85B gene, real-time PCR targeting the IS6110 region, and nested PCR targeting the MPB64 gene and IS6110 region. Correlation between detection of MTB RNA, culture positivity, and ZN staining was studied. RESULTS Five patients with endophthalmitis with no history of tuberculosis revealed acid-fast bacilli on ZN staining of vitreous. RT-PCR detected 85B RNA within 24 h. Culture for MTB was positive in 3/5 patients after 1 month. None of the eyes recovered any useful vision. CONCLUSIONS RT-PCR can detect viable MTB RNA and provide evidence of active infection much earlier than culture.
Collapse
Affiliation(s)
- Ekta Rishi
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| | - Pukhraj Rishi
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| | - K Lily Therese
- b Larsen & Toubro Microbiology Research Centre, Vision Research Foundation , Chennai , Tamil Nadu , India
| | - Gayathri Ramasubban
- b Larsen & Toubro Microbiology Research Centre, Vision Research Foundation , Chennai , Tamil Nadu , India
| | - Jyotirmay Biswas
- c Larsen & Toubro Pathology Department, Vision Research Foundation , Chennai , Tamil Nadu , India
| | - Tarun Sharma
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| | - Pramod Bhende
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| | - Pradeep Susvar
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| | - Mamta Agarwal
- d Department of Uveitis, Medical Research Foundation , Chennai , Tamil Nadu , India
| | | | - Kushal Delhiwala
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| | - Vishal Rajan Sharma
- a Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation , Chennai , India
| |
Collapse
|
8
|
Asmar S, Drancourt M. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis. BMC Microbiol 2015; 15:155. [PMID: 26238865 PMCID: PMC4524104 DOI: 10.1186/s12866-015-0479-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. RESULTS We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum specimens were artificially infected with 10(5) colony-forming units (cfu)/mL Mycobacterium tuberculosis and Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans as contaminants. In the second step, we tested chlorhexidine-based decontamination on 191 clinical specimens, (Chlorhexidine, 0.1, 0.5 and 0.7 %). In a last step, growth of contaminants and mycobacteria was measured in 75 consecutive sputum specimens using the routine NALC-NaOH decontamination protocol or with 0.7 % chlorhexidine decontamination and an inoculation on Coletsos medium. In the artificially model, contaminants grew in 100 % of the artificially infected sputum specimens decontaminated using 100 mg/mL squalamine, in 62.5 % of specimens decontaminated using N-Acetyl-L-Cysteine-Sodium Hydroxide (NALC-NaOH), and in 0 % of specimens decontaminated using 0.1 %, 0.35 %, or 1 % chlorhexidine (P < 0.05). These specimens yielded <10(2) cfu M. tuberculosis using NALC-NaOH and > 1.4.10(2) cfu M. tuberculosis when any concentration of chlorhexidine was used (P < 0.05). In the second step we found that 0.7 %-chlorhexidine yielded 0 % contamination rate, 3.2 % for 0.5 %-chlorhexidine and 28.3 % for 0.1 %-chlorhexidine. As for the 75 specimens treated in parallel by both methods we found that when using the standard NALC-NaOH decontamination method, 8/75 (10.7 %) specimens yielded M. tuberculosis colonies with a time to detection of 17.5 ± 3 days and an 8 % contamination rate. Additionally, 14 specimens yielded mycobacteria colonies (12 M. tuberculosis, and 2 Mycobacterium bolletii) (18.7 %) (P = 0.25), which has yielded a 100 % sensitivity for the chlorhexidine protocol. Time to detection was of 15.86 ± 4.7 days (P = 0.39) and a 0 % contamination rate (P < 0.05) using the 0.7 %-chlorhexidine protocol. CONCLUSION In our work we showed for the first time that chlorhexidine based decontamination is superior to the standard NALC-NaOH method in the isolation of M. tuberculosis from sputum specimens. We currently use 0.7 %-chlorhexidine for the routine decontamination of sputum specimens for the isolation of M. tuberculosis and non-tuberculosis mycobacteria on egg-lecithin containing media.
Collapse
Affiliation(s)
- Shady Asmar
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire «Méditerranée Infection», AP-HM, 13005, Marseille, France.
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire «Méditerranée Infection», AP-HM, 13005, Marseille, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, 27, Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| |
Collapse
|
9
|
Ghodbane R, Raoult D, Drancourt M. Dramatic reduction of culture time of Mycobacterium tuberculosis. Sci Rep 2014; 4:4236. [PMID: 24577292 PMCID: PMC3937792 DOI: 10.1038/srep04236] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/03/2014] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis culture, a critical technique for routine diagnosis of tuberculosis, takes more than two weeks. Here, step-by-step improvements in the protocol including a new medium, microaerophlic atmosphere or ascorbic-acid supplement and autofluorescence detection dramatically shortened this delay. In the best case, primary culture and rifampicin susceptibility testing were achieved in 72 hours when specimens were inoculated directly on the medium supplemented by antibiotic at the beginning of the culture.
Collapse
Affiliation(s)
- Ramzi Ghodbane
- Aix Marseille Université, URMITE UMR CNRS 7278, IRD 198, Inserm 1095, 13005, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE UMR CNRS 7278, IRD 198, Inserm 1095, 13005, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE UMR CNRS 7278, IRD 198, Inserm 1095, 13005, Marseille, France
| |
Collapse
|
10
|
Jarzembowski JA, Young MB. Nontuberculous mycobacterial infections. Arch Pathol Lab Med 2008; 132:1333-41. [PMID: 18684037 DOI: 10.5858/2008-132-1333-nmi] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2008] [Indexed: 11/06/2022]
Abstract
CONTEXT Nontuberculous mycobacteria include numerous acid-fast bacilli species, many of which have only recently been recognized as pathogenic. The diagnosis of mycobacterial disease is based on a combination of clinical features, microbiologic data, radiographic findings, and histopathologic studies. OBJECTIVE To provide an overview of the clinical and pathologic aspects of nontuberculous mycobacteria infection, including diagnostic laboratory methods, classification, epidemiology, clinical presentation, and treatment. DATA SOURCES Review of the pertinent literature and published methodologies. CONCLUSIONS Nontuberculous mycobacteria include numerous acid-fast bacilli species, many of which are potentially pathogenic, and are classified according to the Runyon system based on growth rates and pigment production. Their slow growth hinders cultures, which require special medium and prolonged incubation. Although such methods are still used, newer nucleic acid-based technologies (polymerase chain reaction and hybridization assays) can rapidly detect and speciate some mycobacteria--most notably, distinguishing Mycobacterium tuberculosis from other species. Infections caused by these organisms can present as a variety of clinical syndromes, not only in immunocompromised patients but also in immunocompetent hosts. Most common among these are chronic pulmonary infections, superficial lymphadenitis, soft tissue and osteoarticular infections, and disseminated disease. Treatment of nontuberculous mycobacterial infections is difficult, requiring extended courses of multidrug therapy with or without adjunctive surgical intervention.
Collapse
Affiliation(s)
- Jason A Jarzembowski
- Department of Pathology, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53201, USA.
| | | |
Collapse
|
11
|
Bruijnesteijn van Coppenraet LES, Kuijper EJ, Lindeboom JA, Prins JM, Claas ECJ. Mycobacterium haemophilum and lymphadenitis in children. Emerg Infect Dis 2005; 11:62-8. [PMID: 15705324 PMCID: PMC3294366 DOI: 10.3201/eid1101.040589] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium haemophilum is the second most common pathogen in children with mycobacterial lymphadenitis. Infections associated with Mycobacterium haemophilum are underdiagnosed because specific culture methods required for its recovery are not applied routinely. Using polymerase chain reaction (PCR) technology on fine needle aspirates and biopsied specimens from 89 children with cervicofacial lymphadenitis, we assessed the importance of M. haemophilum. Application of a Mycobacterium genus–specific real-time PCR in combination with amplicon sequencing and a M. haemophilum–specific PCR resulted in the recognition of M. haemophilum as the causative agent in 16 (18%) children with cervicofacial lymphadenitis. Mycobacterium avium was the most frequently found species (56%), and M. haemophilum was the second most commonly recognized pathogen. Real-time PCR results were superior to culture because only 9 (56%) of the 16 diagnosed M. haemophilum infections were positive by culture.
Collapse
|