1
|
Jurak I, Cokarić Brdovčak M, Djaković L, Bertović I, Knežević K, Lončarić M, Jurak Begonja A, Malatesti N. Photodynamic Inhibition of Herpes Simplex Virus 1 Infection by Tricationic Amphiphilic Porphyrin with a Long Alkyl Chain. Pharmaceutics 2023; 15:pharmaceutics15030956. [PMID: 36986817 PMCID: PMC10058617 DOI: 10.3390/pharmaceutics15030956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Photodynamic therapy (PDT) is broadly used to treat different tumors, and it is a rapidly developing approach to inactivating or inhibiting the replication of fungi, bacteria, and viruses. Herpes simplex virus 1 (HSV-1) is an important human pathogen and a frequently used model to study the effects of PDT on enveloped viruses. Although many photosensitizers (PSs) have been tested for their antiviral properties, analyses are usually limited to assessing the reduction in viral yield, and thus the molecular mechanisms of photodynamic inactivation (PDI) remain poorly understood. In this study, we investigated the antiviral properties of TMPyP3-C17H35, a tricationic amphiphilic porphyrin-based PS with a long alkyl chain. We show that light-activated TMPyP3-C17H35 can efficiently block virus replication at certain nM concentrations without exerting obvious cytotoxicity. Moreover, we show that the levels of viral proteins (immediate-early, early, and late genes) were greatly reduced in cells treated with subtoxic concentrations of TMPyP3-C17H35, resulting in markedly decreased viral replication. Interestingly, we observed a strong inhibitory effect of TMPyP3-C17H35 on the virus yield only when cells were treated before or shortly after infection. In addition to the antiviral activity of the internalized compound, we show that the compound dramatically reduces the infectivity of free virus in the supernatant. Overall, our results demonstrate that activated TMPyP3-C17H35 effectively inhibits HSV-1 replication and that it can be further developed as a potential novel treatment and used as a model to study photodynamic antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Correspondence:
| | - Maja Cokarić Brdovčak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Lara Djaković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Ivana Bertović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Klaudia Knežević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| |
Collapse
|
2
|
Urquhart CG, Pinheiro TDR, da Silva JLG, Leal DBR, Burgo TAL, Iglesias BA, Santos RCV. Antimicrobial activity of water-soluble tetra-cationic porphyrins on Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2022; 42:103266. [PMID: 36587859 DOI: 10.1016/j.pdpdt.2022.103266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
This manuscript presents the cytotoxicity, antimicrobial activity, antibiofilm preliminary properties, and associated therapy with commercial drugs using water-soluble tetra-cationic porphyrins against Pseudomonas aeruginosa. Two commercial tetra-cationic porphyrins were tested against a standard strain of P. aeruginosa 01 (PA01) in antibacterial activity assays under dark conditions and irradiated with white light for 120 min. Porphyrin 4-H2TMePor showed better antimicrobial activity and was chosen for further tests. Increased minimum inhibitory concentration was observed in the presence of reactive oxygen species, suggesting that photooxidation was mediated by the singlet oxygen production. In the time-kill curve assay, 4-H2TMePor inhibited bacterial growth in 90 min of irradiation. The checkerboard assay revealed synergistic interactions. Biofilms of the standard PA01 strain and three clinical isolates were formed. The biofilm destruction assay was more efficient for PA01, significantly reducing the biofilm biomass formed compared to the positive control. The associated treatment to destroy the biofilm potentiated a significant decrease in the biofilm biomass compared to the positive control. The photosensitizer did not damage human keratinocytes or mouse fibroblasts in the cytotoxicity assays, demonstrating the safety of using 4-H2TMePor. Atomic force microscopy indicated lower adhesion force, higher cell wall deformation, and higher dissipation energy in the treated control compared to untreated PA01. Given our findings, it is evident that water-soluble tetra-cationic porphyrins have excellent antimicrobial and a preliminary antibiofilm activity against Gram-negative bacteria, proving to be a potential photosensitizer for clinical use.
Collapse
Affiliation(s)
- Carolina Gonzalez Urquhart
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Ticiane da Rosa Pinheiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, Sao Paulo State University (Unesp), R. Cristovao Colombo, 2265, S. J. Rio Preto, SP 15014-100, Brazil
| | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Roberto Christ Vianna Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
The antibacterial activity of photodynamic agents against multidrug resistant bacteria causing wound infection. Photodiagnosis Photodyn Ther 2022; 40:103066. [PMID: 35998880 DOI: 10.1016/j.pdpdt.2022.103066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial photodynamic inactivation (aPDI) of multidrug-resistant (MDR) wound pathogens was evaluated with cationic porphyrin derivatives (CPDs). MDR bacterial strains including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae were used. The CPDs named PM, PE, PN, and PL were synthesized as a photosensitizer (PS). A diode laser with a wavelength of 655 nm was used as a light source. aPDI of the combinations formed with different energy densities (50, 100, and 150 J/cm²) and PS concentrations (ranging from 3.125 to 600 µM) were evaluated on each bacterial strain. Dark toxicity, cytotoxicity, and phototoxicity were determined on fibroblast cells. In the aPDI groups, survival reductions of up to 5.80 log₁₀ for E. coli, 5.90 log₁₀ for P. aeruginosa, 6.11 log₁₀ for K. pneumoniae, and 6.78 log₁₀ for A. baumannii were obtained. The cytotoxic effect of PL and PM on fibroblast cells was very limited. PN was the type of CPD with the highest dark toxicity on fibroblast cells. In terms of providing broad-spectrum aPDI without or with very limited cytotoxic effect, the best result was observed in aPDI application with PL. The other CPDs need some modifications to show bacterial selectivity for use at 50 µM and above.
Collapse
|
4
|
The effect of indocyanine green-based photodynamic therapy on healthy fibroblast and keratinocyte cells. Photodiagnosis Photodyn Ther 2020; 31:101891. [DOI: 10.1016/j.pdpdt.2020.101891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
|
5
|
Anane YA, Apalata T, Vasaikar S, Okuthe GE, Songca SP. In vitro antimicrobial photodynamic inactivation of multidrug-resistant Acinetobacter baumannii biofilm using Protoporphyrin IX and Methylene blue. Photodiagnosis Photodyn Ther 2020; 30:101752. [PMID: 32289462 DOI: 10.1016/j.pdpdt.2020.101752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acinetobacter baumannii is a challenging pathogen due to the rapid development of antimicrobial resistance and biofilm formation. The objective of this study was to evaluate the effect of antimicrobial photodynamic inactivation against biofilms of multidrug-resistant A. baumannii isolated from clinical, abattoir and aquatic sources. METHODS The isolates were tested for susceptibility to imipenem, meropenem, tigecycline and colistin using autoSCAN-4 automated system and rechecked by the E-test. Methylene blue, Protoporphyrin IX, and a halogen lamp were used in the in vitro assay against biofilms of the isolates. The antimicrobial photodynamic inactivation was assessed by counting colony-forming units (CFU). RESULTS The isolates from abattoir and aquatic sources were resistant to carbapenems (>64 μg/mL) but susceptible to tigecycline (2 μg/mL) and colistin (Abattoir, 0.35 μg/mL and Aquatic, 0.24 μg/mL), whereas the clinical isolate was susceptible to only colistin (0.5 μg/mL) using the E-test. The log survival percentages of the control group at a concentration of 20 μM were 5 × 10-6 % for Protoporphyrin IX and 2 × 10-6 % for Methylene blue. Therefore, Methylene blue showed higher bacterial reduction of 7.0 log10 colony forming units than 6.0 log10 for Protoporphyrin IX. No significant difference was observed with respect to the origin of isolates and the minimum inhibitory concentrations. CONCLUSION The results indicate that antimicrobial photodynamic inactivation could be an alternative strategy for the control of infections caused by multi-drug resistant A. baumannii by significantly reducing biofilm growth at a sub-lethal concentrations.
Collapse
Affiliation(s)
- Yaw Adjei Anane
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa.
| | - Teke Apalata
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa.
| | - Sandeep Vasaikar
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa
| | - Grace Emily Okuthe
- Department of Biological & Environmental Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa.
| | - Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, 2nd Floor, Francis Stock Building, Howard College Campus, UKZN, Durban, 4041, South Africa.
| |
Collapse
|
6
|
Malatesti N, Munitic I, Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev 2017; 9:149-168. [PMID: 28510089 PMCID: PMC5425819 DOI: 10.1007/s12551-017-0257-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) combines a photosensitiser, light and molecular oxygen to induce oxidative stress that can be used to kill pathogens, cancer cells and other highly proliferative cells. There is a growing number of clinically approved photosensitisers and applications of PDT, whose main advantages include the possibility of selective targeting, localised action and stimulation of the immune responses. Further improvements and broader use of PDT could be accomplished by designing new photosensitisers with increased selectivity and bioavailability. Porphyrin-based photosensitisers with amphiphilic properties, bearing one or more positive charges, are an effective tool in PDT against cancers, microbial infections and, most recently, autoimmune skin disorders. The aim of the review is to present some of the recent examples of the applications and research that employ this specific group of photosensitisers. Furthermore, we will highlight the link between their structural characteristics and PDT efficiency, which will be helpful as guidelines for rational design and evaluation of new PSs.
Collapse
Affiliation(s)
- Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| | - Ivana Munitic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| |
Collapse
|
7
|
Hanakova A, Bogdanova K, Tomankova K, Pizova K, Malohlava J, Binder S, Bajgar R, Langova K, Kolar M, Mosinger J, Kolarova H. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol Res 2014; 169:163-70. [DOI: 10.1016/j.micres.2013.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 11/26/2022]
|
8
|
IL-1α, IL-1β, IL-6, and IL-8 secretion of human keratocytes following photodynamic inactivation (PDI) in vitro. Graefes Arch Clin Exp Ophthalmol 2013; 251:2585-90. [DOI: 10.1007/s00417-013-2465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022] Open
|
9
|
KGF, FGFb, VEGF, HGF and TGFβ1 secretion of human keratocytes following photodynamic inactivation (PDI) in vitro. Graefes Arch Clin Exp Ophthalmol 2013; 251:1987-93. [DOI: 10.1007/s00417-013-2370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022] Open
|
10
|
Imidazoacridinone derivatives as efficient sensitizers in photoantimicrobial chemotherapy. Appl Environ Microbiol 2013; 79:3692-702. [PMID: 23563951 DOI: 10.1128/aem.00748-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to investigate a new potential photosensitizer (PS) in the photodynamic inactivation (PDI) of microorganisms in vitro (11 reference strains and 13 clinical isolates, representing common Gram-positive and Gram-negative human pathogens), with special emphasis on Candida albicans. We studied the light-induced cytotoxicity of the imidazoacridinone derivative C1330 toward fungal cells grown in planktonic form. We examined the influence of various parameters (time of incubation, PDI quencher effect, and C1330 accumulation in C. albicans cells) on the efficacy of light-dependent cytotoxicity. Additionally, we checked for the potential cyto- and phototoxic activity of C1330 against human dermal keratinocytes. In our research, we used a broadband incoherent blue light source (380 to 470 nm) with an output power of 100 mW/cm(2). In vitro studies showed that the C1330 action against C. albicans was a light-dependent process. C1330 was an efficient photosensitizer in the photodynamic inactivation of C. albicans, which reduced the growth of planktonic cells by 6.1 log10 units. Efficient accumulation of PS in the nucleus and vacuoles was observed after 30 min of incubation, which correlated with the highest photokilling efficacy. Significant changes in intracellular structure were observed upon illumination of C1330-incubated C. albicans cells. In the case of the human HaCaT cell line, approximately 40% of cells survived the treatment, which indicates the potential benefit of further study of the application of C1330 in photoantimicrobial chemotherapy. These data suggest that PDI may be a viable approach for the treatment of localized C. albicans infections.
Collapse
|
11
|
Rodrigues GB, Dias-Baruffi M, Holman N, Wainwright M, Braga GUL. In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis Photodyn Ther 2012; 10:141-9. [PMID: 23769280 DOI: 10.1016/j.pdpdt.2012.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/24/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the in vitro susceptibilities of five Candida spp. to photodynamic antimicrobial chemotherapy (PACT) with four phenothiazinium derivatives, methylene blue (MB), new methylene blue N (NMBN), toluidine blue O (TBO) and the novel pentacyclic phenothiazinium photosensitiser S137, in combination with red light were investigated. The efficacy of each PS was determined, initially, based on its minimal inhibitory concentration (MIC). Additionally, we evaluated the effect of the photodynamic treatment with NMBN and S137 on Candida survival and on the mouse fibroblast cell line L929. MICs varied both among PS and species and decreased with light dose increase. For most treatments (species and fluences) NMBN and S137 showed the lowest MICs. MICs for NMBN and S137 were <2.5 μM for all the Candida species when a fluence of 25 J cm⁻² was used. PACT with NMBN (fluence of 15 J cm⁻²) resulted in reductions in survival from 0.3 log (Candida krusei) to 3 logs (C. parapsilosis). PACT with S137 was more effective than with NMBN. Fluence of 15 J cm⁻² resulted in reductions in survival from 1 log (C. krusei) to 3 logs (C. parapsilosis) and fluence of 25 J cm⁻² resulted in a reduction of approximately 2 logs (C. krusei) and between 3 and 4 logs in survival of the other 4 species of Candida. In vitro relative toxicities of the phenothiazinium PS to mammalian cells exhibited a similar trend to the antifungal data, i.e. greater toxicity and phototoxicity with NMBN and S137 compared to the established PS.
Collapse
Affiliation(s)
- Gabriela B Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
12
|
Antimicrobial Photodynamic Therapy for the Treatment of Teeth with Apical Periodontitis: A Histopathological Evaluation. J Endod 2012; 38:360-6. [DOI: 10.1016/j.joen.2011.12.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/10/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022]
|
13
|
Dovigo LN, Pavarina AC, Mima EGDO, Giampaolo ET, Vergani CE, Bagnato VS. Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 2011; 54:123-30. [PMID: 19889173 DOI: 10.1111/j.1439-0507.2009.01769.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although photodynamic therapy (PDT) has shown great promise for the inactivation of Candida species, its effectiveness against azole-resistant pathogens remains poorly documented. This in vitro study describes the association of Photogem® (Photogem, Moscow, Russia) with LED (light emitting diode) light for the photoinactivation of fluconazole-resistant (FR) and American Type Culture Collection (ATCC) strains of Candida albicans and Candida glabrata. Suspensions of each Candida strain were treated with five Photogem® concentrations and exposed to four LED light fluences (14, 24, 34 or 50 min of illumination). After incubation (48 h at 37 °C), colonies were counted (CFU ml(-1)). Single-species biofilms were generated on cellulose membrane filters, treated with 25.0 mg l(-1) of Photogem® and illuminated at 37.5 J cm(-2). The biofilms were then disrupted and the viable yeast cells present were determined. Planktonic suspensions of FR strains were effectively killed after PDT. It was observed that the fungicidal effect of PDT was strain-dependent. Significant decreases in biofilm viability were observed for three strains of C. albicans and for two strains of C. glabrata. The results of this investigation demonstrated that although PDT was effective against Candida species, fluconazole-resistant strains showed reduced sensitivity to PDT. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.
Collapse
Affiliation(s)
- Lívia Nordi Dovigo
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Trindade FZ, Pavarina AC, Ribeiro APD, Bagnato VS, Vergani CE, de Souza Costa CA. Toxicity of photodynamic therapy with LED associated to Photogem®: An in vivo study. Lasers Med Sci 2011; 27:403-11. [DOI: 10.1007/s10103-011-0909-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 03/04/2011] [Indexed: 11/29/2022]
|
15
|
Photodynamic therapy associating Photogem® and blue LED on L929 and MDPC-23 cell culture. Cell Biol Int 2010; 34:343-51. [DOI: 10.1042/cbi20090032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Donnelly RF, McCarron PA, Tunney MM. Antifungal photodynamic therapy. Microbiol Res 2008; 163:1-12. [DOI: 10.1016/j.micres.2007.08.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/02/2007] [Accepted: 08/05/2007] [Indexed: 11/26/2022]
|
17
|
Rosenfeld A, Morgan J, Goswami LN, Ohulchanskyy T, Zheng X, Prasad PN, Oseroff A, Pandey RK. Photosensitizers Derived from 132-Oxo-methyl Pyropheophorbide-a: Enhanced Effect of Indium(III) as a Central Metal in In Vitro and In Vivo Photosensitizing Efficacy. Photochem Photobiol 2006; 82:626-34. [PMID: 16277564 DOI: 10.1562/2005-09-29-ra-704] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of an additional keto group on absorption wavelength and the corresponding metal complexes Zn(II), Cu(II) In(III) on singlet oxygen production and photodynamic efficacy were examined among the alkyl ether analogs of pyropheophorbide-a. For the preparation of the desired photosensitizers, the methyl 13(2)-oxo-pyropheophorbide-a obtained by reacting methyl pyropheophorbide-a with aqueous LiOH-THF was converted into a series of alkyl ether analogs. These compounds were evaluated for photophysical properties and in vitro (by means of the MTT assay and intracellular localization in RIF cells) and in vivo (in C3H mice implanted with RIF tumors) photosensitizing efficacy. Among the alkyl ether derivatives, the methyl 3-decyloxyethyl-3-devinyl-13(2)-oxo-pyropheophorbide-a was found to be most effective and the insertion of In(III) into this analog further enhanced its in vitro and in vivo photosensitizing efficacy. Fluorescence microscopy showed that, in contrast to the hexyl and dodecyl ether derivatives of HPPH (which localize in mitochondria and lysosomes, respectively), the diketo-analogs and their In(III) complexes localized in Golgi bodies. The preliminary in vitro and in vivo results suggest that, in both free-base and metalated analogs, the introduction of an additional keto group at the five-member exocyclic ring in pyropheophorbide-a diminishes its photosensitizing efficacy. This may be due to a shift in subcellular localization from mitochondria to the Golgi bodies. The further introduction of In(III) enhances photoactivity, but not by shifting the localization of the photosensitizer.
Collapse
Affiliation(s)
- Andrew Rosenfeld
- Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|