1
|
Bayat M, Asgari M, Abdollahifar MA, Moradi A, Zare F, Kouhkheil R, Gazor R, Ebrahiminia A, Karbasaraea ZS, Chien S. Photobiomodulation and mesenchymal stem cell-conditioned medium for the repair of experimental critical-size defects. Lasers Med Sci 2024; 39:158. [PMID: 38888695 DOI: 10.1007/s10103-024-04109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Orthopedic surgeons face a significant challenge in treating critical-size femoral defects (CSFD) caused by osteoporosis (OP), trauma, infection, or bone tumor resections. In this study for the first time, the application of photobiomodulation (PBM) and bone marrow mesenchymal stem cell-conditioned medium (BM-MSC-CM) to improve the osteogenic characteristics of mineralized bone scaffold (MBS) in ovariectomy-induced osteoporotic (OVX) rats with a CSFD was tested. Five groups of OVX rats with CSFD were created: (1) Control (C); (2) MBS; (3) MBS + CM; (4) MBS + PBM; (5) MBS + CM + PBM. Computed tomography scans (CT scans), compression indentation tests, and histological and stereological analyses were carried out after euthanasia at 12 weeks following implantation surgery. The CT scan results showed that CSFD in the MBS + CM, MBS + PBM, and MBS + CM + PBM groups was significantly smaller compared to the control group (p = 0.01, p = 0.04, and p = 0.000, respectively). Moreover, the CSFD size was substantially smaller in the MBS + CM + PBM treatment group than in the MBS, MBS + CM, and MBS + PBM treatment groups (p = 0.004, p = 0.04, and p = 0.01, respectively). The MBS + PBM and MBS + CM + PBM treatments had significantly increased maximum force relative to the control group (p = 0.01 and p = 0.03, respectively). Bending stiffness significantly increased in MBS (p = 0.006), MBS + CM, MBS + PBM, and MBS + CM + PBM treatments (all p = 0.004) relative to the control group. All treatment groups had considerably higher new trabecular bone volume (NTBV) than the control group (all, p = 0.004). Combined therapies with MBS + PBM and MBS + CM + PBM substantially increased the NTBV relative to the MBS group (all, p = 0.004). The MBS + CM + PBM treatment had a markedly higher NTBV than the MBS + PBM (p = 0.006) and MBS + CM (p = 0.004) treatments. MBS + CM + PBM, MBS + PBM, and MBS + CM treatments significantly accelerated bone regeneration of CSFD in OVX rats. PBM + CM enhanced the osteogenesis of the MBS compared to other treatment groups.
Collapse
Affiliation(s)
- Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA
| | - Mehrdad Asgari
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Kouhkheil
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rouhallah Gazor
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Ebrahiminia
- Department of Medical Physics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA
| |
Collapse
|
2
|
Zhu L, Gao X, Lv Y, Yu S, Tang L, Liu TC. Integrated Dose-Effect Relationship of Near-Infrared Light-Emitting Diode Light on Bone Regeneration in Disuse Osteoporosis Rats. Photobiomodul Photomed Laser Surg 2023. [PMID: 37379488 DOI: 10.1089/photob.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Objective: To examine the integrated dose-effect relationship of near-infrared (NIR) light-emitting diode (LED) light therapy in promoting bone defect repair in the rat model for osteoporosis (OP). Background: Low-intensity laser therapy has been shown to promote bone regeneration in OP rats. However, its integrated dose-effect relationship is not clear. Methods: Twenty-week-old male Sprague-Dawley rats were randomly assigned to 11 groups: (1) no-treatment control group (C group), (2) tail suspension (TS)-induced disuse OP experimental group (TS-OP group), and (3) OP rats with LED light treatment at nine dosages (L1-L9 groups). The tail of the rat was tied and suspended on the beam of the cage to suspend their hind limbs to induce bone loss for 4 or 7 weeks. The rats were then released and returned to their regular positions. An NIR LED at 810 nm was used on the bilateral hind limbs daily for 4 weeks. The C group rats were not given any treatment. The TS-OP group rats were subjected to identical procedures with L groups, with the exception that the light power was not turned on. After the experiment, the dual-energy X-rays or the microcomputed tomography scan analysis was performed to evaluate bone tissue status. Data analysis was done using SPSS and the health scale. Results: The trabecular thickness, trabecular number, bone volume/total volume, and connectivity density of cancellous bone and the biomechanical properties of femur in light groups were significantly increased compared with the TS-OP group, while the trabecular separation and structure model index were significantly decreased. Conclusions: NIR LED light therapy may promote trabecular bone repair of TS-OP rats. Light intensity influences photobiomodulation. In our dose levels, the greater the light intensity, usually the more effective.
Collapse
Affiliation(s)
- Ling Zhu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Xinpeng Gao
- Laboratory of Laser Sports Medicine, College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ying Lv
- Laboratory of Laser Sports Medicine, College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Shuai Yu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Lu Tang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Polo TOB, Fonseca-Santos JM, Momesso GAC, da Silva WPP, Barbosa S, Santos AMDS, Silva MC, Garcia VG, Theodoro LH, Faverani LP. Single intraoperative infrared laser optimized bone repair in rat femoral osteotomies with experimentally induced osteoporosis. Lasers Med Sci 2023; 38:87. [PMID: 36935455 DOI: 10.1007/s10103-023-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
This study aimed to evaluate the effect of infrared laser (IRL) on bone repair in ovariectomized rats subjected to femoral osteotomies. Of 32 rats, half underwent bilateral ovariectomy (OVX) and the other half underwent sham ovariectomy (SHAM). A period of 3 months was defined to observe the presence of osteoporosis. The rats were subjected to osteotomies in the femurs and then fixed with a miniplate and 1.5-mm system screws. Thereafter, half of the rats from both SHAM and OVX groups were not irradiated, and the other half were irradiated by IRL using the following parameters: wavelength, 808 nm; power, 100 mW; 60 s for each point; 6 J/point; and a total of 5 points of bone gap. All animals were euthanized 60 days after surgery. The femur gap was scanned using micro-computed tomography (micro-CT). The samples were then examined under a confocal laser microscope to determine the amounts of calcein and alizarin red. The slides were stained with alizarin red and Stevenel's blue for histometric analysis. In the micro-CT analysis, the OVX groups had the lowest bone volume (P < 0.05). When the laser was applied to the OVX groups, bone turnover increased (P < 0.05). New bone formation (NBF) was comparable between SHAM and OVX/IR (P > 0.05) groups; however, it was less in the OVX groups (P < 0.05). In conclusion, the results encourage the use of IRL intraoperatively as it optimizes bone repair, mainly in animals with low bone mineral density.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Gustavo Antonio Correa Momesso
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Implantology, University of Santo Amaro, Unisa, São Paulo, SP, Brazil
| | | | - Stefany Barbosa
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Mirela Caroline Silva
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Valdir Gouveia Garcia
- Diagnosis and Surgery Department, School of Dentistry, São Paulo State University (UNESP), 1193 José Bonifácio Street, Araçatuba, São Paulo, 16015-050, Brazil
| | - Letícia Helena Theodoro
- Diagnosis and Surgery Department, School of Dentistry, São Paulo State University (UNESP), 1193 José Bonifácio Street, Araçatuba, São Paulo, 16015-050, Brazil
| | - Leonardo P Faverani
- Diagnosis and Surgery Department, School of Dentistry, São Paulo State University (UNESP), 1193 José Bonifácio Street, Araçatuba, São Paulo, 16015-050, Brazil.
| |
Collapse
|
4
|
Shokri A, Moradhaseli H, Fekrazad R, Jazaeri M, Farhadian M. Effect of photobiomodulation therapy with different wavelengths on bone mineral density in osteoporotic rats. Lasers Med Sci 2023; 38:59. [PMID: 36723764 DOI: 10.1007/s10103-023-03714-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Osteoporosis is associated with severe pain, bone deformity, fracture, and bone loss. It is important to find strategies to prevent bone resorption and treat osteoporosis. This study sought to assess the effect of photobiomodulation therapy (PBMT) with different wavelengths on bone mineral density (BMD) in osteoporotic rats. This animal study evaluated 63 adult female rats. The rats underwent ovariectomy to induce osteoporosis. Ovariectomized rats were randomly divided into 9 groups of control (OC), treatment with zoledronic acid alone (0.02 mg/kg), and treatment with 660 nm, 810 nm, and 940 nm PBMT alone (3 times a week for 6 weeks, energy density of 4 J/cm2), and combined with zoledronic acid. The healthy control group (HC) only underwent sham surgery. The rats underwent cone-beam computed tomography (CBCT) 52 days after the first treatment session to measure their BMD according to the gray value (GV) of images. To assess the biomechanical properties of bone, the resected bones were subjected to 3-point bending test (3-PBT). The experimental groups had significant differences with the OC group regarding radiographic and biomechanical properties of bone (P < 0.05), indicating a healing course. No significant difference was noted between the experimental groups treated with different laser wavelengths and those treated with zoledronic acid (P > 0.05). In the condition of this study, it was found that PBMT at a constant energy density of 4 J/cm2 with 660-, 810-, and 940-nm wavelengths is effective for enhancement of bone mineral density and biomechanical properties. No significant difference was noted between different wavelengths of diode laser regarding radiographic and biomechanical properties of bone.
Collapse
Affiliation(s)
- Abbas Shokri
- Dental Implants Research Center, Department of Oral and Maxillofacial Radiology, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reza Fekrazad
- Radiation Sciences Research Center, International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research, Network (USERN), AJA University of Medical Sciences, Tehran, Iran
| | - Mina Jazaeri
- Department of Oral Medicine, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Gazor R, Asgari M, Abdollajhifar MA, Kiani P, Zare F, Fadaei Fathabady F, Norouzian M, Amini A, Khosravipour A, Atashgah RB, Kazemi M, Chien S, Bayat M. Simultaneous Treatment of Photobiomodulation and Demineralized Bone Matrix With Adipose-Derived Stem Cells Improve Bone Healing in an osteoporotic bone defect. J Lasers Med Sci 2021; 12:e41. [PMID: 34733764 DOI: 10.34172/jlms.2021.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.
Collapse
Affiliation(s)
- Rouhallah Gazor
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Asgari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; And Department of Maxillofacial Radiology, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mohammad-Amin Abdollajhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Kiani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Khosravipour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rahimeh B Atashgah
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169- 43551, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky; USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky; USA
| |
Collapse
|
6
|
Is the 0.2%-Strain-Offset Approach Appropriate for Calculating the Yield Stress of Cortical Bone? Ann Biomed Eng 2021; 49:1747-1760. [PMID: 33479788 DOI: 10.1007/s10439-020-02719-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022]
Abstract
The 0.2% strain offset approach is mostly used to calculate the yield stress and serves as an efficient method for cross-lab comparisons of measured material properties. However, it is difficult to accurately determine the yield of the bone. Especially when computational models require accurate material parameters, clarification of the yield point is needed. We tested 24 cortical specimens harvested from six bovine femora in three-point bending mode, and 11 bovine femoral cortical specimens in the tensile mode. The Young's modulus and yield stress for each specimen derived from the specimen-specific finite element (FE) optimization method was regarded as the most ideal constitutive parameter. Then, the strain offset optimization method was used to find the strain offset closest to the ideal yield stress for the 24 specimens. The results showed that the 0 strain offsets underestimated (- 25%) the yield stress in bending and tensile tests, while the 0.2% strain offsets overestimated the yield stress (+ 65%) in three-point bending tests. Instead, the yield stress determined by 0.007 and 0.05% strain offset for bending and tensile loading respectively, can effectively characterize the biomechanical responses of the bone, thereby helping to build an accurate FE model.
Collapse
|
7
|
Osuna LGG, Soares CJ, Vilela ABF, Irie MS, Versluis A, Soares PBF. Influence of bone defect position and span in 3-point bending tests: experimental and finite element analysis. Braz Oral Res 2020; 35:e001. [PMID: 33206774 DOI: 10.1590/1807-3107bor-2021.vol35.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Three-point bending test is the most common mechanical test used for quantifying the biomechanical quality of bone tissue and bone healing in small animals. However, there is a lack of standardization for evaluation of bone repair by cortical perforation. The aim of this study was to determine the influence of bone defect position in the proximal metaphysis of rat tibias during load application and different span configuration on the three-point bending test outcomes. Cortical defects with 1.6 mm diameter were created at a standardized location on the medial surface of 60 tibias of male Wistar rats. The animals were euthanized 7 days after surgery. Five specimens were used to create 3D models for finite element analysis using high-resolution micro-CT images. Two spans (6 and 10mm) and three positions of the bone defect in relation to the load application (upward, frontal and downward) were evaluated experimentally (n = 10) and in finite element analysis (n = 5). Maximum load (N) and stiffness (N/mm) were statistically analyzed with 2-way ANOVA and Tukey test (α = 0.05). The results demonstrated that span and orientation of the bone defect significantly influenced the fracture pattern, stress distribution and force versus displacement relation. Therefore, reliable outcome can be achieved creating the bone defect at 8 mm from the extremity of the proximal epiphysis; placing a 10 mm distance span and downward facing defect position to allow a better distribution of stress and more fracture patterns that reached the bone defect target area with less intra-group variability.
Collapse
Affiliation(s)
- Luis Gustavo Gonzalez Osuna
- Universidade Federal de Uberlândia - UFU, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| | - Carlos José Soares
- Universidade Federal de Uberlândia - UFU, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | - Andomar Bruno Fernandes Vilela
- Universidade Federal de Uberlândia - UFU, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brazil
| | - Milena Suemi Irie
- Universidade Federal de Uberlândia - UFU, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| | - Antheunis Versluis
- University of Tennessee Health Science Center, College of Dentistry, Department of Bioscience Research, Memphis, TN, USA
| | | |
Collapse
|
8
|
Asgari M, Gazor R, Abdollahifar MA, Fadaei Fathabady F, Zare F, Norouzian M, Amini A, Khosravipour A, Kiani P, Atashgah RB, Rezaei F, Ghoreishi SK, Chien S, Hamblin MR, Bayat M. Combined therapy of adipose-derived stem cells and photobiomodulation on accelerated bone healing of a critical size defect in an osteoporotic rat model. Biochem Biophys Res Commun 2020; 530:173-180. [PMID: 32828282 DOI: 10.1016/j.bbrc.2020.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022]
Abstract
We investigated the impact of human demineralized bone matrix (hDBM) plus adipose-derived stem cells (hADS) plus photobiomodulation (PBM) on a critical-sized femoral defect (CSFD) in ovariectomy induced osteoporosis in rats. There were 6 groups as follows. In group 1 (control, C), only CSFDs were created. Groups 2-6 were implanted with DBM into the CSFD (DBM-CSFD). In group 2 (S), only DBM was transplanted into the CSFD. In group 3 (S + PBM), the DBM-CSFDs were treated with PBM. In group 4, the DBM-CSFDs were treated with alendronate (S + ALN). In group 5, ADSs were seeded into DBM-CSFD (S + ADS). In group 6, ADSs were seeded into DBM-CSFD and the CSFDs were treated with PBM (S + PBM + ADS). At week eight (catabolic phase of bone repair), the S + ALN, S + PBM + ADS, S + PBM, and S + ADS groups all had significantly increased bone strength than the S group (ANOVA, p = 0.000). The S + PBM, S + PBM + ADS, and S + ADS groups had significantly increased Hounsfield unit than the S group (ANOVA, p = 0.000). ALN, ADS, and PBM significantly increased healed bone strength in an experimental model of DBM-treated CSFD in the catabolic phase of bone healing in osteoporotic rats. However, ALN alone and PBM plus ADS were superior to the other protocols.
Collapse
Affiliation(s)
- Mehrdad Asgari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rouhallah Gazor
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Armin Khosravipour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pejman Kiani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran.
| | - Rahimeh B Atashgah
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran.
| | - Fatemehsadat Rezaei
- University of Kentucky College of Pharmacy, 789 South Limestone, Lexington, KY, 40536, USA.
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC, Louisville, KY, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
9
|
Chang B, Qiu H, Zhao H, Yang X, Wang Y, Ji T, Zhang Y, Quan Q, Li Y, Zeng J, Meng H, Gu Y. The Effects of Photobiomodulation on MC3T3-E1 Cells via 630 nm and 810 nm Light-Emitting Diode. Med Sci Monit 2019; 25:8744-8752. [PMID: 31743330 PMCID: PMC6880645 DOI: 10.12659/msm.920396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Photobiomodulation (PBM) has been explored as a promising therapeutic strategy to regulate bone cell growth; however, the effects of PBM on osteoblast cell lines remains poorly understood. In addition, as a light source of PBM, the light uniformity of light-emitting diode (LED) devices has not been given enough attention. MATERIAL AND METHODS Here, we sought to investigate the effects of PBM on MC3T3-E1 cells via 630 nm and 810 nm light from a newly designed LED with high uniformity of light. Cell proliferation, flow cytometric analysis, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out to assess treatment response. MC3T3-E1 cells were irradiated with LED devices (630±5 nm and 810±10 nm, continuous wave) for 200 seconds at a power density of 5 mW/cm² once daily. RESULTS Increases in cell proliferation and decreases in cell apoptosis were evident following irradiation. ALP staining intensity and activity were also significantly increased following irradiation. Level of mineralization was obviously enhanced in irradiated groups compared with non-irradiated controls. qRT-PCR also showed significant increases in mRNA expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the irradiated groups. CONCLUSIONS Our results showed that LED PBM could promote the proliferation, ALP staining intensity and activity, level of mineralization, gene expression of OCN and OPG of MC3T3-E1 cells, with no significant difference between the 630 nm- and 810 nm-irradiated groups.
Collapse
Affiliation(s)
- Biao Chang
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Haixia Qiu
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P.R. China
- General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, P.R. China
| | - Ying Wang
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Tengda Ji
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Yuxuan Zhang
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Qi Quan
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Yunqi Li
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Jing Zeng
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Ying Gu
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| |
Collapse
|
10
|
Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 2019; 35:557-566. [DOI: 10.1007/s10103-019-02848-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
|
11
|
Beneficial effects of hyperoside on bone metabolism in ovariectomized mice. Biomed Pharmacother 2018; 107:1175-1182. [DOI: 10.1016/j.biopha.2018.08.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
|
12
|
Combined effects of photobiomodulation and alendronate on viability of osteoporotic bone marrow-derived mesenchymal stem cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:77-84. [DOI: 10.1016/j.jphotobiol.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
|
13
|
Zhang T, Gao J, Fang J, Gong H. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats. J Bone Miner Metab 2018; 36:157-169. [PMID: 28293780 DOI: 10.1007/s00774-017-0827-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P < 0.05). Vx (x = 5, 12, 19, 26) rats showed poor microarchitectures. The content of tartrate-resistant acid phosphatase 5b was significantly higher in Vx (x = 5, 12, 19, 26) rats than that in SED rats (P < 0.05). V26 rats demonstrated comparatively better nanomechanical properties of materials than the other vibrational groups. Additional weight bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Juan Fang
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
14
|
Alayat MSM, Abdel-Kafy EM, Thabet AAM, Abdel-Malek AS, Ali TH, Header EA. Long-Term Effect of Pulsed Nd-YAG Laser Combined with Exercise on Bone Mineral Density in Men with Osteopenia or Osteoporosis: 1 Year of Follow-Up. Photomed Laser Surg 2017; 36:105-111. [PMID: 29068756 DOI: 10.1089/pho.2017.4328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A pulsed Nd-YAG laser is an effective physiotherapy modality used as a class IV high-intensity laser therapy (HILT). OBJECTIVE The aim of this study is to investigate the efficacy of HILT alone or combined with exercise (HILT+EX) on bone mineral density (BMD) after 24 weeks and at 1 year of follow-up in men with osteopenia or osteoporosis. METHODS One hundred men with osteopenia or osteoporosis (mean age, 53.78 [2.89] years; weight, 80.56 [7.33] kg; height 175 [5.30] cm) participated in the study. The T-scores were ≤-1.5. Patients were randomly assigned to four groups: HILT+EX (group I), placebo laser plus exercise (PL+EX; group II), HILT alone (HILT; group III), and PL (group IV). HILT was applied to the lower back and hip regions. Aerobic, weight-bearing, flexibility, strengthening, and balance exercises were performed three times per week for 24 weeks. The measured outcomes were BMD of the L2-L4 spine and total hip. Measurements were taken before and after 24 weeks and at 1 year of follow-up. RESULTS Lumbar and total hip BMD significantly increased post-treatment in the HILT+EX and PL+EX groups, but insignificantly in the HILT and PL groups. HILT+EX showed a significantly greater effect than PL+EX did on lumbar BMD, with no significant difference in total hip BMD, after 24 weeks and at follow-up. CONCLUSIONS Although HILT alone did not effectively increase lumbar and total hip BMD, HILT combined with exercise was more effective than exercise alone at increasing lumbar BMD after 24 weeks of treatment, with effects lasting up to 1 year.
Collapse
Affiliation(s)
| | - Ehab Mohamed Abdel-Kafy
- 1 Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| | - Ali Abdel Monsif Thabet
- 1 Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| | | | - Tariq Helmi Ali
- 2 Umm Al-Qura University Medical Center, Umm Al-Qura University , Makkah, Saudi Arabia
| | - Eslam A Header
- 3 Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| |
Collapse
|
15
|
Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomy-induced osteoporosis of rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:29-36. [DOI: 10.1016/j.jphotobiol.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022]
|
16
|
Mostafavinia A, Ahadi R, Abdollahifar M, Ghorishi SK, Jalalifirouzkouhi A, Bayat M. Evaluation of the Effects of Photobiomodulation on Biomechanical Properties and Hounsfield Unit of Partial Osteotomy Healing in an Experimental Rat Model of Type I Diabetes and Osteoporosis. Photomed Laser Surg 2017; 35:520-529. [DOI: 10.1089/pho.2016.4191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ataroalsadat Mostafavinia
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadamin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Bayat
- Celluar and Molecular Biology Research Centre, and Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
OBJECTIVE Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats. METHODS Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength. RESULTS The extracts dose-dependently and significantly (P < 0.05) improved bone strength and flexibility, bone mineral density, bone formation protein markers (P1NP), and bone histomorphometry. All extracts reduced the inflammation biomarker (interleukin-6). The extracts up-regulated osteoblastogenesis (bone morphogenetic protein-2) and collagen-1 synthesis (collagen type 1 alpha-1) mRNA expressions, and down-regulated bone resorption (TNFSF11 and nuclear factor-kappa B) mRNA expressions. Both the water and 50% ethanolic extract were effective. The effective dose is equivalent to 25 to 50 mg/kg extract for humans. CONCLUSIONS The extract showed bone-protective and antiosteoporotic effects (improving bone strength, flexibility, bone density, and bone morphometry) by reducing inflammation and the bone resorption biomarkers, while enhancing bone formation biomarkers and collagen synthesis.
Collapse
|
18
|
Alayat MSM, Abdel-Kafy EM, Elsoudany AM, Helal OF, Alshehri MA. Efficacy of high intensity laser therapy in the treatment of male with osteopenia or osteoporosis: a randomized placebo-controlled trial. J Phys Ther Sci 2017; 29:1675-1679. [PMID: 28932011 PMCID: PMC5599844 DOI: 10.1589/jpts.29.1675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
[Purpose] To investigate the effect of high intensity laser therapy, alone or combined
with exercise on pain, health related quality of life and fall risk in male with
osteopenia or osteoporosis. [Subjects and Methods] 100 male patients with osteopenia or
osteoporosis participated in the study. They had T-scores ≤−1.5. Patients were randomly
assigned into four groups and treated with laser plus exercise, placebo laser plus
exercise, laser alone and placebo laser in groups I, II, III, and IV respectively. Laser
was applied to the lower back and hip regions. Exercises included aerobic exercises,
weight-bearing, flexibility, and strengthening and balance exercises. Treatment were
performed 3 times/week for 12 weeks. The measured outcomes were pain, health related
quality of life and fall risk. [Results] All measured outcomes were significantly
decreased post-treatment in all treatment groups. Laser plus exercises showed a higher
significant effect than exercises with a least significant effect in the laser group in
reduction of pain and quality of life. [Conclusion] High intensity laser is an effective
modality for male patients with osteopenia or osteoporosis. Laser combined with exercise
is more effective than exercises or laser alone in decreasing pain, fall risk an
increasing quality of life after 12 weeks of treatment.
Collapse
Affiliation(s)
| | - Ehab Mohamed Abdel-Kafy
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University: Mecca 21955, Saudi Arabia
| | - Ahmed Mohamed Elsoudany
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University: Mecca 21955, Saudi Arabia
| | - Omar Farouk Helal
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University: Mecca 21955, Saudi Arabia
| | - Mansour Abdullah Alshehri
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University: Mecca 21955, Saudi Arabia
| |
Collapse
|
19
|
Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R, Bayat M. Effect of low‐level laser therapy and oxytocin on osteoporotic bone marrow‐derived mesenchymal stem cells. J Cell Biochem 2017; 119:983-997. [DOI: 10.1002/jcb.26265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Somaye Fallahnezhad
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Piryaei
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hasan Darbandi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abdollah Amini
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
20
|
Evaluation of the effects of photobiomodulation on vertebras in two rat models of experimental osteoporosis. Lasers Med Sci 2017; 32:1545-1560. [PMID: 28725994 DOI: 10.1007/s10103-017-2278-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 06/29/2017] [Indexed: 01/12/2023]
Abstract
The aim of this study was to evaluate the effects of photobiomodulation (PBM) on cancellous bone in rat models of ovariectomized induced osteoporosis (OVX-D) and glucocorticoid-induced osteoporosis (GIOP). The experiment comprised of nine groups. A group of healthy rats was used for baseline evaluations. The OVX-D rats were further divided into groups as follows: control rats with osteoporosis, OVX-D rats that received alendronate (1 mg/kg 60 days), OVX-D rats treated with pulsed wave laser (890 nm, 80 Hz, 900 s, 0.0061 W/cm2, 5.5 J/cm2, three times a week, 60 days), and OVX-D rats treated with alendronate + pulsed laser. Dexamethasone was administered to the remaining rats that were split into four groups: control, alendronate-treated rats, laser-treated rats, and GIOP rats treated with alendronate + laser. T12, L1, L2, and L3 vertebrae were subjected to laser. Results of the current study demonstrated that OVX-D and GIOP significantly decreased some stereological parameters, and type 1 collagen gene expression compared to the healthy group. There was a significant increase in osteoclast number in both OVX-D and glucocorticoid administration compared to the healthy group. However, the detrimental effect of the OVX-D procedure on bone was more serious than glucocorticoid administration. Results showed that laser alone had a detrimental effect on trabecular bone volume, and cortical bone volume in groups GIOP and OVX-D compared to those in the healthy group. Alendronate significantly improved total vertebral bone volume, trabecular bone volume, and cortical bone volume, in GIOP and OVX-D groups compared to the laser-treated groups. Furthermore, the alendronate + laser in OVX-D rats and GIOP rats produced significantly increased osteoblast number and type 1 collagen gene expression and caused a significant decrease in osteoclast number compared to the controls.
Collapse
|
21
|
Fallahnezhad S, Piryaei A, Tabeie F, Nazarian H, Darbandi H, Amini A, Mostafavinia A, Ghorishi SK, Jalalifirouzkouhi A, Bayat M. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:98002. [PMID: 27685702 DOI: 10.1117/1.jbo.21.9.098002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate the influences of helium–neon (He–Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He–Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4??J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6??J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6??J/cm2 with He–Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.
Collapse
Affiliation(s)
- Somaye Fallahnezhad
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Biology and Anatomical Sciences, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Abbas Piryaei
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Biology and Anatomical Sciences, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Faraj Tabeie
- Shahid Beheshti University of Medical Sciences, Physiotherapy Research Centre, School of Rehabilitation Sciences, Department of Basic Sciences, and School of Medicine, Department of Nuclear Medicine, Damavand Street across from Bu Ali Hospital, Tehran, Iran
| | - Hamid Nazarian
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Biology and Anatomical Sciences, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Hasan Darbandi
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Immunology, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Abdoldllah Amini
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Biology and Anatomical Sciences, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Ataroalsadat Mostafavinia
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Biology and Anatomical Sciences, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Seyed Kamran Ghorishi
- Qom University, Department of Statistics, Faculty of Sciences, Old Road of Isfahan, Qom 3716146611, Iran
| | - Ali Jalalifirouzkouhi
- Shahid Beheshti University of Medical Sciences, Cellular and Molecular Biology Research Center, School of Medicine, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| | - Mohammad Bayat
- Shahid Beheshti University of Medical Sciences, School of Medicine, Department of Biology and Anatomical Sciences, Koodakyar Street, Danshjoo Boulevard, Velenjak, Shahid Chamran Highway, PO Box 19395/4719, Tehran 1985717443, Iran
| |
Collapse
|
22
|
Evaluation of the effects of pulsed wave LLLT on tibial diaphysis in two rat models of experimental osteoporosis, as examined by stereological and real-time PCR gene expression analyses. Lasers Med Sci 2016; 31:721-32. [PMID: 26964799 DOI: 10.1007/s10103-016-1916-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
Osteoporosis (OP) and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. Previous studies have shown that pulsed wave low-level laser therapy (PW LLLT) has osteogenic effects. This study intended to evaluate the impacts of PW LLLT on the cortical bone of osteoporotic rats' tibias in two experimental models, ovariectomized and dexamethasone-treated. We divided the rats into four ovariectomized induced OP (OVX-d) and four dexamethasone-treated (glucocorticoid-induced OP, GIOP) groups. A healthy (H) group of rats was considered for baseline evaluations. At 14 weeks following ovariectomy, we subdivided the OVX-d rats into the following groups: (i) control which had OP, (ii) OVX-d rats treated with alendronate (1 mg/kg), (iii) OVX-d rats treated with LLLT, and (iv) OVX-d rats treated with alendronate and PW LLLT. The remaining rats received dexamethasone over a 5-week period and were also subdivided into four groups: (i) control rats treated with intramuscular (i.m.) injections of distilled water (vehicle), (ii) rats treated with subcutaneous alendronate injections (1 mg/kg), (iii) laser-treated rats, and (iv) rats simultaneously treated with laser and alendronate. The rats received alendronate for 30 days and underwent PW LLLT (890 nm, 80 Hz, 0.972 J/cm(2)) three times per week during 8 weeks. Then, the right tibias were extracted and underwent a stereological analysis of histological parameters and real-time polymerase chain reaction (RT-PCR). A significant increase in cortical bone volume (mm(3)) existed in all study groups compared to the healthy rats. There were significant decreases in trabecular bone volume (mm(3)) in all study groups compared to the group of healthy rats. The control rats with OP and rats from the vehicle group showed significantly increased osteoclast numbers compared to most other groups. Alendronate significantly decreased osteoclast numbers in osteoporotic rats. Concurrent treatments (compounded by PW LLLT and alendronate) produce the same effect on osteoporotic bone.
Collapse
|
23
|
An evaluation of the effect of pulsed wave low-level laser therapy on the biomechanical properties of the vertebral body in two experimental osteoporosis rat models. Lasers Med Sci 2015; 31:305-14. [DOI: 10.1007/s10103-015-1842-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
24
|
Supraphysiologic glucocorticoid administration increased biomechanical bone strength of rats' vertebral body. Lab Anim Res 2015; 31:180-7. [PMID: 26755921 PMCID: PMC4707146 DOI: 10.5625/lar.2015.31.4.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to assess the effects of different glucocorticoid administration protocols on biomechanical properties of the first lumbar vertebral body in rats. We divided 40 male rats into the following groups: control, dexamethasone (7 mg/week), dexamethasone (0.7 mg/week), methylprednisolone (7 mg/kg/week), methylprednisolone (5 mg/kg twice weekly), dexamethasone (7 mg/kg three times per week), dexamethasone (0.7 mg/kg three times per week, and low-level laser treated rats. Lumbar vertebrae in rats were exposed to the pulsed laser. We conducted a biomechanical test to examine the mechanical properties of vertebral body in rats' lumbar bone. Supraphysiologic glucocorticoid administration protocols did not impair the biomechanical properties of rats' vertebral bodies compared to control and laser-treated rats. Supraphysiologic glucocorticoid administration caused an anabolic effect on the vertebral bodies.
Collapse
|
25
|
Oksztulska-Kolanek E, Znorko B, Michałowska M, Pawlak K. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease. Nephron Clin Pract 2015; 132:51-8. [DOI: 10.1159/000442714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
|