1
|
Laser photobiomodulation does not alter clinical and histological characteristics of 4-NQO-induced oral carcinomas and leukoplakia in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112597. [DOI: 10.1016/j.jphotobiol.2022.112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
2
|
Rezende LFD, Da Silva Costa EC, Lenzi J, Carvalho RL, Vilas Boas VF. Transcutaneous Electrical Stimulation, Interferential Current and Photobiomodulation May Lead to the Recurrence of Breast Cancer in Rats? REVISTA BRASILEIRA DE CANCEROLOGIA 2022. [DOI: 10.32635/2176-9745.rbc.2022v68n3.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Introduction: Transcutaneous electrical nerve stimulation (TENS), interferential current therapy (IFC) and photobiomodulation therapy (PBMT) have been used in the management of cancer-related pain in adults. However, there are still some controversy regarding the effects of this therapy on tumor cells that may remain after cancer treatment. Objective: To evaluate the risk of recurrence of breast cancer in rats when using TENS, IFC or PBMT. Method: An experimental, randomized, controlled and cross-sectional study. With 90 days of age, 7,12-dimetylbenz(a)anthracene (7,12-DMBA) was administered to rats by gastric gavage to induce mammary cancer. After 120 days the mammary glands of the rats belonging to the group with mammary cancer were removed. Results: 39 female Sprague-Dawley rats were studied: 9 rats without induction of mammary carcinoma; 9 rats with induction of mammary carcinoma and without surgery; 9 rats with induction of mammary carcinoma with surgery and placebo application of TENS, IFC, PBMT; 9 rats with induction of mammary carcinoma, surgery and the application of TENS, IFC and PBMT. Conclusion: This study demonstrated that there was local recurrence of tumors in rats that were stimulated with TENS or IFC, however no evidence of local recurrence with PBMT.
Collapse
|
3
|
Zhukova ES, Shcherbatyuk TG, Chernigina IA, Chernov VV, Gapeyev AB. Violet-Blue Light Photobiomodulation of the Dynamics of Tumor Growth and Prooxidant-Antioxidant Balance in the Body of Tumor Carriers. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Chen Z, Huang S, Liu M. The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:3-11. [PMID: 34181781 DOI: 10.1111/phpp.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Photobiomodulation (PBM) uses low-intensity visible or near-infrared light to produce beneficial effects on cells or tissues, such as brain therapy, wound healing. Still there is no consistent recommendation on the parameters (dose, light mode, wavelength, irradiance) and protocols (repetition, treatment duration) for its clinical application. Herein, we summarize the current PBM parameters for the treatment of melanoma, and we also discuss the potential photoreceptors and downstream signaling mechanisms in the PBM treatment of melanoma cells. It is hypothesized that PBM may inhibit the melanoma cells by activating mitochondria, OPNs, and other receptors. Regardless of the underlying mechanisms, PBM has been shown to be beneficial in treating melanoma. Through further in-depth studies of the underlying potential mechanisms, it can strengthen the applications of PBM for the therapy of melanoma.
Collapse
Affiliation(s)
- Zeqing Chen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shijie Huang
- Zhongshan Fudan Joint Innovation Center, Zhongshan City, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan City, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Bensadoun RJ, Epstein JB, Nair RG, Barasch A, Raber-Durlacher JE, Migliorati C, Genot-Klastersky MT, Treister N, Arany P, Lodewijckx J, Robijns J. Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Med 2020; 9:8279-8300. [PMID: 33107198 PMCID: PMC7666741 DOI: 10.1002/cam4.3582] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
We performed a systematic review of the current literature addressing the safety and efficacy of photobiomodulation therapy (PBMT) in cancer patients. In this systematic review, the Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) guidelines were used. In vitro, in vivo, and clinical studies, which investigated the effect of PBMT on cell proliferation/differentiation, tumor growth, recurrence rate, and/or overall survival were included. The Medline/PubMed, EMBASE, and Scopus databases were searched through April 2020. A total of 67 studies met the inclusion criteria with 43 in vitro, 15 in vivo, and 9 clinical studies identified. In vitro studies investigating the effect of PBMT on a diverse range of cancer cell lines demonstrated conflicting results. This could be due to the differences in used parameters and the frequency of PBM applications. In vivo studies and clinical trials with a follow‐up period demonstrated that PBMT is safe with regards to tumor growth and patient advantage in the prevention and treatment of specific cancer therapy‐related complications. Current human studies, supported by most animal studies, show safety with PBMT using currently recommended clinical parameters, including in Head & Neck cancer (HNC) in the area of PBMT exposure. A significant and growing literature indicates that PBMT is safe and effective, and may even offer a benefit in patient overall survival. Nevertheless, continuing research is indicated to improve understanding and provide further elucidation of remaining questions regarding PBM use in oncology.
Collapse
Affiliation(s)
| | - Joel B Epstein
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.,Cedars-Sinai Health System, Los Angeles, CA, USA
| | - Raj G Nair
- Oral Medicine/Oral Oncology, Griffith University and Haematology and Oncology, Gold Coast University Hospital, Queensland Health, Gold Coast, QLD, Australia
| | - Andrei Barasch
- Harvard School of Dental Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Judith E Raber-Durlacher
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Cesar Migliorati
- College of Dentistry, Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida, Gainesville, FL, USA
| | | | - Nathaniel Treister
- Department of Oral Medicine, Harvard School of Dental Medicine, Boston, MA, USA
| | - Praveen Arany
- School of Dental Medicine, University of Buffalo, Buffalo, NY, USA
| | - Joy Lodewijckx
- Faculty of Medicine and Life Sciences, UHasselt, Hasselt, Belgium
| | - Jolien Robijns
- Faculty of Medicine and Life Sciences, UHasselt, Hasselt, Belgium
| | | |
Collapse
|
6
|
Pereira ST, Silva CR, Nuñez SC, Ribeiro MS. Safety and Clinical Impact of a Single Red Light Irradiation on Breast Tumor-Bearing Mice. Photochem Photobiol 2020; 97:435-442. [PMID: 33011980 DOI: 10.1111/php.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022]
Abstract
Low-level light therapy has been used in health care as a therapeutic strategy for different diseases. However, its effects on cancer are controversial. This work evaluated the effects of three energies on breast cancer-bearing mice after a single red light-emitting diode (LED) irradiation. 4T1 cells were inoculated into the mammary fat pad of female BALB/c mice. When tumor volume reached 100 mm3 , animals were irradiated by a LED irradiator (660 ± 11 nm) with energies of 1.2, 3.6, and 6.0 J. Control without irradiation and healthy animals were also evaluated. Mice were monitored regarding tumor volume and total blood count. After euthanasia, their organs were examined. We observed that a single irradiation does not increase tumor volume. All irradiated groups exhibited better clinical conditions than control, which presented a significant decrease in platelet and red blood cell levels compared with healthy mice. The energy of 3.6 J arrested neutrophil-lymphocyte rate besides promoting longer survival and a lower number of metastatic nodules in the lungs. These findings suggest that a single red LED irradiation causes no impact on the course of the disease. Besides, the intermediary dose-effect should be further investigated since it seems to promote better outcomes on breast cancer-bearing mice.
Collapse
Affiliation(s)
- Saulo T Pereira
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo, Brazil
| | - Camila R Silva
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo, Brazil
| | - Silvia C Nuñez
- Department of Bioengineering, University Brazil, São Paulo, Brazil
| | - Martha S Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo, Brazil
| |
Collapse
|
7
|
Heiskanen V, Pfiffner M, Partonen T. Sunlight and health: shifting the focus from vitamin D3 to photobiomodulation by red and near-infrared light. Ageing Res Rev 2020; 61:101089. [PMID: 32464190 DOI: 10.1016/j.arr.2020.101089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Both sun exposure and serum vitamin D levels have been associated with lower risks of all-cause mortality and chronic age-related diseases, e.g., cancer, diabetes and cardiovascular disease, in epidemiological studies. These associations have mainly been ascribed to beneficial effects of vitamin D. However, a vast body of randomized controlled trials (RCTs) and Mendelian randomization studies have failed to confirm any major health benefits from vitamin D supplementation. In this review, we present tentative evidence showing that red and near-infrared light, both being present in sunlight, could explain the associations between sunlight exposure and better health status. Body irradiation with red and near-infrared light, usually termed as photobiomodulation (PBM), has demonstrated beneficial effects in animal models of chronic diseases. Beyond this, preliminary evidence from RCTs suggest potential clinical benefit from PBM for chronic diseases. PBM is currently being investigated in many pre-registered clinical trials, results of which will eventually clarify the role of red and near-infrared light in the prevention and treatment of common age-related chronic diseases.
Collapse
|
8
|
Laser-photobiomodulation on experimental cancer pain model in Walker Tumor-256. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111979. [PMID: 32738748 DOI: 10.1016/j.jphotobiol.2020.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT Cancer Pain is considered a common and significant clinical problem in malignant neoplasms, comprising 20% to 50% of all patients with tumor progression. Laser photobiomodulation (L-PBM) has been used in a multitude of pain events, ranging from acute trauma to chronic articular. However, L-PBM has never been tested in cancer pain. OBJECTIVES Evaluate hyperalgesia, edema, COX-1, COX-2, IL-10, and Bdkrb1 mRNA in low-level laser irradiated Walker-256 tumor-bearing rats. METHODS Rat hind paw injected with Walker Tumor-256 (W-256) and divided into six groups of 6 rats: G1 (control) - W-256 injected, G2- W-256 + Nimesulide, G3- W-256 + 1 J, G4- W-256 + 3 Jand G5- W256 + 6 J. Laser parameters: λ = 660 nm, 3.57 W/cm2, Ø = 0.028 cm2. Mechanical hyperalgesia was evaluated by Randall-Selitto test. Plethysmography measured edema; mRNA levels of COX-1, COX-2, IL-10, and Bdkrb1were analyzed. RESULTS It was found that the W-256 + 1 J group showed a decrease in paw edema, a significant reduction in pain threshold. Higher levels of IL-10 and lower levels of COX-2 and Bdkrb1 were observed. CONCLUSION Results suggest that 1 J L-PBM reduced the expression of COX-2 and Bdkrb1 and increasing IL-10 gene expression, promoting analgesia to close levels to nimesulide.
Collapse
|
9
|
Chen Z, Li W, Hu X, Liu M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. BIOMEDICAL OPTICS EXPRESS 2020; 11:27-39. [PMID: 32010497 PMCID: PMC6968738 DOI: 10.1364/boe.11.000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Melanoma is a type of aggressive cancer. Recent studies have indicated that blue light has an inhibition effect on melanoma cells, but the effect of photobiomodulation (PBM) parameters on the treatment of melanoma remains unknown. Thus, this study was aimed to investigate B16F10 melanoma cells responses to PBM with varying irradiance and doses, and further explored the molecular mechanism of PBM. Our results suggested that the responses of B16F10 melanoma cells to PBM with varying irradiance and dose were different and the inhibition of blue light on cells under high irradiance was better than low irradiance at a constant total dose (0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), presumably due to that high irradiance can produce more ROS, thus disrupting mitochondrial function.
Collapse
Affiliation(s)
- Zeqing Chen
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Wenqi Li
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| |
Collapse
|