1
|
Moura RS, Afonso JPR, Mello DACPG, Palma RK, Oliveira-Silva I, Oliveira RF, Oliveira DAAP, Santos DB, Silva CHM, Guedes OA, Insalaco G, Oliveira LVF. Hydrogels Associated with Photodynamic Therapy Have Antimicrobial Effect against Staphylococcus aureus: A Systematic Review. Gels 2024; 10:635. [PMID: 39451287 PMCID: PMC11507634 DOI: 10.3390/gels10100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that causes infections ranging from mild superficial cases to more severe, potentially fatal conditions. Many photosensitisers used in photodynamic therapy are more effective against superficial infections due to limitations in treating deeper tissue infections. Recently, attention to this bacterium has increased due to the emergence of multidrug-resistant strains, which complicate antibiotic treatment. As a result, alternative therapies, such as antimicrobial photodynamic therapy (PDT), have emerged as promising options for treating non-systemic infections. PDT combines a photosensitiser (PS) with light and oxygen to generate free radicals that destroy bacterial structures. This systematic review evaluates the effectiveness of PDT delivered via different types of hydrogels in treating wounds, burns, and contamination by S. aureus. Following PRISMA 2020 guidelines, a bibliographic search was conducted in PubMed, Web of Science, and Scopus databases, including articles published in English between 2013 and 2024. Seven relevant studies were included, demonstrating evidence of PDT use against S. aureus in in vitro and in vivo studies. We concluded that PDT can effectively complement antimicrobial therapy in the healing of wounds and burns. The effectiveness of this technique depends on the PS used, the type of hydrogel, and the lesion location. However, further in vivo studies are needed to confirm the safety and efficacy of PDT delivered via hydrogels.
Collapse
Affiliation(s)
- Ricardo S. Moura
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - João Pedro R. Afonso
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Diego A. C. P. G. Mello
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Renata Kelly Palma
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
- Facultad de Ciencias de la Salud de Manresa, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08243 Manresa, Spain
| | - Iransé Oliveira-Silva
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Rodrigo F. Oliveira
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Deise A. A. P. Oliveira
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Dante B. Santos
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Carlos Hassel M. Silva
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Orlando A. Guedes
- Graduate Master’s Degree Program in Dentistry, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil;
| | - Giuseppe Insalaco
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy;
| | - Luís V. F. Oliveira
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| |
Collapse
|
2
|
Law SK, Liu CWC, Tong CWS, Au DCT. Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer-A Review. Biomedicines 2024; 12:2095. [PMID: 39335608 PMCID: PMC11428695 DOI: 10.3390/biomedicines12092095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and cancers are important issues in public health around the world. Currently, Western medicine is the most suitable approach when dealing with these issues. "Antibiotics" and "Corticosteroids" are the Western medicines used for bacterial infection. "Chemotherapy drugs", "surgery", and "radiotherapy" are common techniques used to treat cancer. These are conventional treatments with many side effects. PDT is a non-invasive and effective therapy for bacterial infection and cancer diseases. METHODS Nine electronic databases, namely WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), were searched to conduct this literature review, without any regard to language constraints. Studies focusing on the photodynamic actions of hydrogel and Resveratrol were included that evaluated the effect of PDT against bacteria and cancer. All eligible studies were analyzed and summarized in this review. RESULTS Resveratrol has antibacterial and anticancer effects. It can also act as PS in PDT or adjuvant but has some limitations. This is much better when combined with a hydrogel to enhance the effectiveness of PDT in the fight against bacteria and cancer. CONCLUSIONS Resveratrol combined with hydrogel is possible for PDT treatment in bacteria and cancer. They are compatible and reinforce each other to increase the effectiveness of PDT. However, much more work is required, such as cytotoxicity safety assessments of the human body and further enhancing the effectiveness of PDT in different environments for future investigations.
Collapse
Affiliation(s)
| | | | | | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong, China; (C.W.C.L.); (C.W.S.T.)
| |
Collapse
|
3
|
Zheng N, Xie Y, Zhou M, Liu Y, Xu H, Zeng R, Wan C, Li M. Utilizing the photodynamic properties of curcumin to disrupt biofilms in Cutibacterium acnes: A promising approach for treating acne. Photodiagnosis Photodyn Ther 2024; 45:103928. [PMID: 38070633 DOI: 10.1016/j.pdpdt.2023.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND The treatment of acne vulgaris is often challenging due to the antibiotic resistance frequently observed in Cutibacterium acnes (C.acnes), a prevalent bacterium linked to this condition. OBJECTIVE The objective of this research was to examine the impact of curcumin photodynamic therapy (PDT) on the survival of C.acnes and activity of biofilms produced by this microorganism. METHODS Following the Clinical and Laboratory Standards Institute (CLSI) guidelines, we assessed the drug sensitivity of 25 clinical C.acnes strains to five antibiotics (erythromycin, clindamycin, tetracycline, doxycycline, minocycline) and curcumin by implementing the broth microdilution technique. In addition, we established C.acnes biofilms in a laboratory setting and subjected them to curcumin-PDT(curcumin combined with blue light of 180 J/cm2). Afterwards, we evaluated their viability using the XTT assay and observed them using confocal laser scanning microscopy. RESULTS The result revealed varying resistance rates among the tested antibiotics and curcumin, with erythromycin, clindamycin, tetracycline, doxycycline, minocycline, and curcumin exhibiting resistance rates of 72 %, 44 %, 36 %, 28 %, 0 %, and 100 %, respectively. In the curcumin-PDT inhibition tests against four representative antibiotic-resistant strains, it was found that the survival rate of all strains of planktonic C. acnes was reduced, and the higher the concentration of curcumin, the lower the survival rate. Furthermore, in the biofilm inhibition tests, the vitality and three-dimensional structure of the biofilms were disrupted, and the inhibitory effect became more significant with higher concentrations of curcumin. CONCLUSION The results emphasize the possibility of using curcumin PDT as an alternative approach for the treatment of C.acnes, especially in instances of antibiotic-resistant variations and infections related to biofilms.
Collapse
Affiliation(s)
- Nana Zheng
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Yuanyuan Xie
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Center for Global Health, School of Public Health, Nanjing Medical University, Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Center for Global Health, School of Public Health, Nanjing Medical University, Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China
| | - Yuzhen Liu
- Department of Dermatology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Haoxiang Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Center for Global Health, School of Public Health, Nanjing Medical University, Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China
| | - Rong Zeng
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Center for Global Health, School of Public Health, Nanjing Medical University, Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China; Department of Dermatology, Yunnan Provincia Hospital of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, Yunnan 650000, China.
| | - Chunping Wan
- Department of Dermatology, Yunnan Provincia Hospital of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, Yunnan 650000, China; Traditional Chinese Medicine Hospital of Chuxiong, Yunnan, 675000, PR China.
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Center for Global Health, School of Public Health, Nanjing Medical University, Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
4
|
Gu X, Yuan H, Li C, Xu L, Li S, Yu D. Toluidine blue O photosensitizer combined with caffeic acid improves antibacterial performance by increasing the permeability of cell membrane. Colloids Surf B Biointerfaces 2024; 233:113657. [PMID: 38000122 DOI: 10.1016/j.colsurfb.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Photodynamic therapy has always been an antibacterial tool for solving multi-drug resistant bacteria problem, but the side effects and the low efficiency due to the high aggregation and low solubility of photosensitizers limit its application. Due to the anti-inflammatory effect of caffeic acid, two novel photosensitizers (CA-1-TBO, CA-TBO) were synthesized by conjugating caffeic acid with toluidine blue O (TBO). The structures have been characterized by 1HNMR and high-resolution mass spectrometry. The UV-vis absorption, fluorescence spectra and the octanol-water partition coefficient of two photosensitizers were measured to evaluate their photophysical properties and hydrophilic/hydrophobic properties. Compared with parent TBO, the two modified photosensitizers have shown a higher quantum yield and kinetics constants of singlet oxygen, which has been supported by the simulation results of density functional theory. As drug-resistant representatives of gram-positive and gram-negative bacteria, respectively, S. aureus and P. aeruginosa have been used for in vitro antibacterial experiments. The sterilization efficiencies of the two modified photosensitizers far exceed that of parent TBO. The results of the octanol-water partition coefficient and fluorescence quantification showed that modified photosensitizers CA-1-TBO and CA-TBO could be more accumulated than parent TBO. Based on scanning electron microscopy images, protein gel electrophoresis, and the conductivity of the bacterial solution, the possible mechanism of improved antibacterial photodynamic efficiencies could be induced by membrane permeability due to the caffeic acid effect. The findings demonstrate the significant potential of natural phenolic compounds in the development of photosensitizer molecules with characteristics such as more efficient, biocompatible and less side effects.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haoyang Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Cailing Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lixian Xu
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Nanjing 210000, PR China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Dinghua Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
5
|
Insińska-Rak M, Sikorski M, Wolnicka-Glubisz A. Riboflavin and Its Derivates as Potential Photosensitizers in the Photodynamic Treatment of Skin Cancers. Cells 2023; 12:2304. [PMID: 37759526 PMCID: PMC10528563 DOI: 10.3390/cells12182304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Riboflavin, a water-soluble vitamin B2, possesses unique biological and physicochemical properties. Its photosensitizing properties make it suitable for various biological applications, such as pathogen inactivation and photodynamic therapy. However, the effectiveness of riboflavin as a photosensitizer is hindered by its degradation upon exposure to light. The review aims to highlight the significance of riboflavin and its derivatives as potential photosensitizers for use in photodynamic therapy. Additionally, a concise overview of photodynamic therapy and utilization of blue light in dermatology is provided, as well as the photochemistry and photobiophysics of riboflavin and its derivatives. Particular emphasis is given to the latest findings on the use of acetylated 3-methyltetraacetyl-riboflavin derivative (3MeTARF) in photodynamic therapy.
Collapse
Affiliation(s)
- Małgorzata Insińska-Rak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.I.-R.); (M.S.)
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.I.-R.); (M.S.)
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
6
|
Xu X, Liu B, Wu H, Zhang Y, Tian X, Tian J, Liu T. Poly Lactic- co-Glycolic Acid-Coated Toluidine Blue Nanoparticles for the Antibacterial Therapy of Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3394. [PMID: 34947743 PMCID: PMC8708285 DOI: 10.3390/nano11123394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
Bacterial infections in wounded skin are associated with high mortality. The emergence of drug-resistant bacteria in wounded skin has been a challenge. Toluidine blue (TB) is a safe and inexpensive photosensitizer that can be activated and used in near-infrared photodynamic therapy to effectively kill methicillin-resistant Staphylococcus aureus (MRSA). However, its aggregation-induced quenching effect largely affects its clinical applications. In this study, TB nanoparticles (NPs) were synthesized using an ultrasound-assisted coating method. Their physicochemical and biological properties were studied and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The TBNPs had a broad-spectrum antibacterial activity against Gram-positive bacteria (MRSA) and Gram-negative bacteria (E. coli). In addition, MTT, hemolysis, and acute toxicity tests confirmed that TBNPs had good biocompatibility. The TBNPs exhibited a high photodynamic performance under laser irradiation and efficiently killed E. coli and MRSA through generated reactive oxygen species, which destroyed the cell wall structure. The potential application of TBNPs in vivo was studied using an MRSA-infected wound model. The TBNPs could promote wound healing within 7 days, mainly by reducing the inflammation and promoting collagen deposition and granulation tissue formation. In conclusion, the TBNPs offer a promising strategy for clinical applications against multiple-drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Jijing Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, China; (X.X.); (B.L.); (H.W.); (Y.Z.); (X.T.)
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, China; (X.X.); (B.L.); (H.W.); (Y.Z.); (X.T.)
| |
Collapse
|
7
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
8
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
9
|
Andreev DA, Zavyalov AA, Ermolaeva TN, Fisun AG, Polyakova KI, Dubovtseva VA, Maksimova TE. Photodynamic therapy as an up-to-date medical technology for the treatment of vulgar acne. VESTNIK DERMATOLOGII I VENEROLOGII 2020. [DOI: 10.25208/0042-4609-2019-95-6-44-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- D. A. Andreev
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| | - A. A. Zavyalov
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| | - T. N. Ermolaeva
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| | - A. G. Fisun
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| | - K. I. Polyakova
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| | - V. A. Dubovtseva
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| | - T. E. Maksimova
- Research Institute for Healthcare Organization and Medical Management, Moscow Healthcare Department
| |
Collapse
|