1
|
Valter K, Tedford SE, Eells JT, Tedford CE. Photobiomodulation use in ophthalmology - an overview of translational research from bench to bedside. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1388602. [PMID: 39211002 PMCID: PMC11358123 DOI: 10.3389/fopht.2024.1388602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation (PBM) refers to the process in which wavelengths of light are absorbed by intracellular photoacceptors, resulting in the activation of signaling pathways that culminate in biological changes within the cell. PBM is the result of low-intensity light-induced reactions in the cell in contrast to thermal photoablation produced by high-intensity lasers. PBM has been effectively used in the clinic to enhance wound healing and mitigate pain and inflammation in musculoskeletal conditions, sports injury, and dental applications for many decades. In the past 20 years, experimental evidence has shown the benefit of PBM in increasing numbers of retinal and ophthalmic conditions. More recently, preclinical findings in ocular models have been translated to the clinic with promising results. This review discusses the preclinical and clinical evidence of the effects of PBM in ophthalmology and provides recommendations of the clinical use of PBM in the management of ocular conditions.
Collapse
Affiliation(s)
- Krisztina Valter
- Clear Vision Laboratory, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
- School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | | | - Janis T. Eells
- College of Health Professions and Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | |
Collapse
|
2
|
Silva LMG, Gouveia VA, Campos GRS, Dale CS, da Palma RK, de Oliveira APL, Marcos RL, Duran CCG, Cogo JC, Silva Junior JA, Zamuner SR. Photobiomodulation mitigates Bothrops jararacussu venom-induced damage in myoblast cells by enhancing myogenic factors and reducing cytokine production. PLoS Negl Trop Dis 2024; 18:e0012227. [PMID: 38814992 PMCID: PMC11192417 DOI: 10.1371/journal.pntd.0012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/21/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS C2C12 myoblast cells were exposed to BjsuV (12.5 μg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кβ, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-β, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-β, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.
Collapse
Affiliation(s)
| | - Viviane Almeida Gouveia
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | | | - Camila Squarzone Dale
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Renata Kelly da Palma
- Facultad De Ciencias De la Salud de Manresa, Universitat de Vic-Universitat Central De Catalunya (UVic-UCC), Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (Iris-CC). Vic, Spain
| | | | - Rodrigo Labat Marcos
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Cinthya Cosme Gutierrez Duran
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - José Carlos Cogo
- Programa de Mestrado em Bioengenharia do Instituto de Ciências e Tecnologia da Universidade Brasil, São Paulo, Brazil
| | - José Antônio Silva Junior
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Stella Regina Zamuner
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| |
Collapse
|
3
|
Liao Z, Lan H, Jian X, Huang J, Wang H, Hu J, Liao H. Myofiber directs macrophages IL-10-Vav1-Rac1 efferocytosis pathway in inflamed muscle following CTX myoinjury by activating the intrinsic TGF-β signaling. Cell Commun Signal 2023; 21:168. [PMID: 37403092 DOI: 10.1186/s12964-023-01163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND To explore the role of skeletal muscle specific TGF-β signaling on macrophages efferocytosis in inflamed muscle caused by Cardiotoxin (CTX) injection. METHODS CTX myoinjury was manipulated in TGF-βr2flox/flox (control) mice or transgenic mice with TGF-β receptor 2 (TGF-βr2) being specifically deleted in skeletal muscle (SM TGF-βr2-/-). Gene levels of TGF-β signal molecules, special inflammatory mediators in damaged muscle or in cultured and differentiated myogenic precursor cells (MPC-myotubes) were monitored by transcriptome microarray or qRT-PCR. TGF-β pathway molecules, myokines and embryonic myosin heavy chain in regenerating myofibers, the phenotype and efferocytosis of macrophages were evaluated by immunofluorescence, immunoblotting, Luminex, or FACS analysis. In vitro apoptotic cells were prepared by UV-irradiation. RESULTS In control mice, TGF-β-Smad2/3 signaling were significantly up-regulated in regenerating centronuclear myofibers after CTX-myoinjury. More severe muscle inflammation was caused by the deficiency of muscle TGF-β signaling, with the increased number of M1, but the decreased number of M2 macrophages. Notably, the deficiency of TGF-β signaling in myofibers dramatically affected on the ability of macrophages to conduct efferocytosis, marked by the decreased number of Annexin-V-F4/80+Tunel+ macrophages in inflamed muscle, and the impaired uptake of macrophages to PKH67+ apoptotic cells transferred into damaged muscle. Further, our study suggested that, the intrinsic TGF-β signaling directed IL-10-Vav1-Rac1 efferocytosis signaling in muscle macrophages. CONCLUSIONS Our data demonstrate that muscle inflammation can be suppressed potentially by activating the intrinsic TGF-β signaling in myofibers to promote IL-10 dependent-macrophages efferocytosis. Video Abstract.
Collapse
Affiliation(s)
- Zhaohong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, 528000, China
| | - Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoting Jian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Han Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jijie Hu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Carvalho ÉS, Oliveira I, Nascimento TP, da Silva Neto AV, Leal BAS, Araújo FQ, Julião BFV, Souza ARN, Abrahim AW, Macedo BBO, de Oliveira JTS, Wen FH, Pucca MB, Monteiro WM, Sachett JAG. Prospecting Local Treatments Used in Conjunction with Antivenom Administration Following Envenomation Caused by Animals: A Systematic Review. Toxins (Basel) 2023; 15:toxins15050313. [PMID: 37235348 DOI: 10.3390/toxins15050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Envenomation caused by venomous animals may trigger significant local complications such as pain, edema, localized hemorrhage, and tissue necrosis, in addition to complications such as dermonecrosis, myonecrosis, and even amputations. This systematic review aims to evaluate scientific evidence on therapies used to target local effects caused by envenomation. The PubMed, MEDLINE, and LILACS databases were used to perform a literature search on the topic. The review was based on studies that cited procedures performed on local injuries following envenomation with the aim of being an adjuvant therapeutic strategy. The literature regarding local treatments used following envenomation reports the use of several alternative methods and/or therapies. The venomous animals found in the search were snakes (82.05%), insects (2.56%), spiders (2.56%), scorpions (2.56%), and others (jellyfish, centipede, sea urchin-10.26%). In regard to the treatments, the use of tourniquets, corticosteroids, antihistamines, and cryotherapy is questionable, as well as the use of plants and oils. Low-intensity lasers stand out as a possible therapeutic tool for these injuries. Local complications can progress to serious conditions and may result in physical disabilities and sequelae. This study compiled information on adjuvant therapeutic measures and underscores the importance of more robust scientific evidence for recommendations that act on local effects together with the antivenom.
Collapse
Affiliation(s)
- Érica S Carvalho
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
| | - Isadora Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040903, São Paulo, Brazil
| | - Thaís P Nascimento
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
| | - Alexandre Vilhena da Silva Neto
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
| | - Brenda A S Leal
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
| | - Felipe Q Araújo
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
| | - Bruno F V Julião
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
| | - Andrea R N Souza
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
| | - Andreza W Abrahim
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
| | - Bruna B O Macedo
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
| | - Jéssica T S de Oliveira
- Department of Teaching and Research, Alfredo da Matta Foundation, Manaus 69065130, Amazonas, Brazil
| | - Fan Hui Wen
- Butantan Institute, São Paulo 05501000, São Paulo, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista 69310000, Roraima, Brazil
- Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista 69310000, Roraima, Brazil
| | - Wuelton M Monteiro
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
| | - Jacqueline A G Sachett
- School of Health Sciences, Amazonas State University, Manaus 69050030, Amazonas, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040000, Amazonas, Brazil
- Department of Teaching and Research, Alfredo da Matta Foundation, Manaus 69065130, Amazonas, Brazil
| |
Collapse
|
5
|
Burton B, Parodi MB, Jürgens I, Zanlonghi X, Hornan D, Roider J, Lorenz K, Munk MR, Croissant CL, Tedford SE, Walker M, Ruckert R, Tedford CE. LIGHTSITE II Randomized Multicenter Trial: Evaluation of Multiwavelength Photobiomodulation in Non-exudative Age-Related Macular Degeneration. Ophthalmol Ther 2023; 12:953-968. [PMID: 36588113 PMCID: PMC9805913 DOI: 10.1007/s40123-022-00640-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Photobiomodulation (PBM) represents a potential treatment for non-exudative age-related macular degeneration (AMD). PBM uses wavelengths of light to target components of the mitochondrial respiratory chain to improve cellular bioenergetic outputs. The aim of this study was to further investigate the effects of PBM on clinical, quality of life (QoL) and anatomical outcomes in subjects with intermediate stage non-exudative AMD. METHODS The multicenter LIGHTSITE II study was a randomized clinical trial evaluating safety and efficacy of PBM in intermediate non-exudative AMD. The LumiThera Valeda® Light Delivery System delivered multiwavelength PBM (590, 660 and 850 nm) or sham treatment 3 × per week over 3-4 weeks (9 treatments per series) with repeated treatments at baseline (BL), 4 and 8 months. Subjects were enrolled with 20/32 to 20/100 best-corrected visual acuity (BCVA) and no central geographic atrophy (GA) within the central fovea (500 μm). RESULTS LIGHTSITE II enrolled 44 non-exudative AMD subjects (53 eyes). PBM-treated eyes showed statistically significant improvement in BCVA at 9 months (n = 32 eyes, p = 0.02) with a 4-letter gain in the PBM-treated group versus a 0.5-letter gain in the sham-treated group (ns, p < 0.1) for patients that received all 27 PBM treatments (n = 29 eyes). Approximately 35.3% of PBM-treated eyes showed ≥ 5-letter improvement at 9 months. Macular drusen volume was not increased over time in the PBM-treated group but did show increases in the sham-treated group. While PBM and sham groups both showed GA lesion growth in the trial period, there was 20% less growth in the PBM group over 10 months, suggesting potential disease-modifying effects. No safety concerns or signs of phototoxicity were observed. CONCLUSION These results confirm previous clinical testing of multiwavelength PBM and support treatment with Valeda as a novel therapy with a unique mechanism of action as a potential treatment for non-exudative AMD. TRIAL REGISTRATION Clinicaltrial.Gov Registration Identifier: NCT03878420.
Collapse
Affiliation(s)
- Ben Burton
- James Paget University, Great Yarmouth, UK
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Vita-Salute San Raffaele University, Istituto Scientifico Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Dan Hornan
- Peterborough City Hospital, Peterborough, UK
| | - Johann Roider
- Klinik Fur Ophthalmologie, Universitatsklinikum Schleswig-Holstein, Kiel, Germany
| | - Katrin Lorenz
- Universitätsmedizin Mainz-Augenklinik, Mainz, Germany
| | - Marion R Munk
- Department of Ophthalmology, Inselspital University Hospital Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Dias da Silva G, da Paixão Sevá A, Lessa Silva F, Mota Sena de Oliveira G, Machado Deorce D, de Jesus da Costa Junior N, Alzamora Filho F. Clinical effects of combined red and infrared wavelengths in the treatment of local injuries caused by Bothrops leucurus snake venom. Toxicon 2023; 225:107055. [PMID: 36780992 DOI: 10.1016/j.toxicon.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
AIM to evaluate the effects of visible and invisible wavelengths, individually and combined, on local edematogenic activity, serum and muscle enzymes, and clinical response in mice inoculated with B. leucurus snake venom. METHODS 112 male mice were inoculated with diluted B. leucurus snake venom in the right gastrocnemius muscle, the same volume of saline solution was applied in the contralateral muscle. The animals were divided into four groups, one control and three treated with: 1) red laser (λ = 660 nm), 2) infrared laser (λ = 808 nm) and 3) red laser (λ = 660 nm) + infrared (λ = 808 nm). Each group was subdivided into four subgroups, according to the duration of treatment application (applications every 24 h over evaluation times of up to 144 h). A diode laser was used (0.1 W, CW, 1J/point, DE: 10 J/cm2). RESULTS the treatments prevented the loss of the proprioception reflex, accelerated the reestablishment of the damaged area, and reduced claudication, local hemorrhage, and edematogenic activity caused by bothropic venom. Both wavelengths reduced serum concentrations of creatine kinase (CK) and aspartate aminotransferase (AST) and increased muscle concentration of CK. The combined wavelengths caused a significant reduction in serum enzyme concentrations and a better clinical response when compared to the isolated treatments. CONCLUSION Laser photobiomodulation proved to be effective in the treatment of the disorders evaluated and the interaction between red and infrared wavelengths potentiated the therapy effects.
Collapse
Affiliation(s)
- Gisele Dias da Silva
- Postgraduate Program in Animal Science, Universidade Estadual de Santa Cruz - UESC, Soane Nazaré de Andrade Campus, Ilhéus, BA, Brazil
| | - Anaiá da Paixão Sevá
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz - UESC, Soane Nazaré de Andrade Campus, Ilhéus, BA, Brazil
| | - Fabiana Lessa Silva
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz - UESC, Soane Nazaré de Andrade Campus, Ilhéus, BA, Brazil.
| | - Gabriela Mota Sena de Oliveira
- Clinical Analysis Laboratory, Veterinary Hospital, Universidade Estadual de Santa Cruz - UESC, Soane Nazaré de Andrade Campus, Ilhéus, BA, Brazil
| | - Danilo Machado Deorce
- Veterinary Medicine Course, Universidade Estadual de Santa Cruz - UESC, Soane Nazaré de Andrade Campus, Ilhéus, BA, Brazil
| | | | - Fernando Alzamora Filho
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz - UESC, Soane Nazaré de Andrade Campus, Ilhéus, BA, Brazil
| |
Collapse
|
7
|
David AC, Silva LMG, Garcia Denegri ME, Leiva LCA, Silva Junior JA, Zuliani JP, Zamuner SR. Photobiomodulation therapy on local effects induced by juvenile and adult venoms of Bothrops alternatus. Toxicon 2022; 220:106941. [DOI: 10.1016/j.toxicon.2022.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
8
|
Effects of different protocols of defocused high-power laser on the viability and migration of myoblasts-a comparative in vitro study. Lasers Med Sci 2022; 37:3571-3581. [PMID: 36125659 DOI: 10.1007/s10103-022-03636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
The aim of the present study was to analyze for the first time the effect of photobiomodulation therapy (PBMT) using defocused high-power laser (DHPL) in myoblast cell line C2C12 viability and migration and compare them with low-power laser therapy. Cells were divided into 9 groups: Sham irradiation 10% fetal bovine serum (FBS); Sham irradiation 5%FBS; low-power laser 0.1 W; DHPL 810 1 W; DHPL 810 2 W; DHPL 980 1 W; DHPL 980 2 W; DHPL dual 1 W; DHPL dual 2 W. To simulate stress conditions, all groups exposed to irradiation were maintained in DMEM 5% FBS. The impact of therapies on cell viability was assessed through sulforhodamine B assay and on cells migration through scratch assays and time-lapse. Myoblast viability was not modified by PBMT protocols. All PBMT protocols were able to accelerate the scratch closure after 6 and 18 h of the first irradiation (p < 0.001). Also, an increase in migration speed, with a more pronounced effect of DHPL laser using dual-wavelength protocol with 2 W was observed (p < 0.001). In conclusion, the diverse PBMT protocols used in this study accelerated the C2C12 myoblasts migration, with 2-W dual-wavelength outstanding as the most effective protocol tested. Benefits from treating muscle injuries with PBMT appear to be related to its capacity to induce cell migration without notable impact on cell viability.
Collapse
|
9
|
De Marchi T, Ferlito JV, Ferlito MV, Salvador M, Leal-Junior ECP. Can Photobiomodulation Therapy (PBMT) Minimize Exercise-Induced Oxidative Stress? A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11091671. [PMID: 36139746 PMCID: PMC9495825 DOI: 10.3390/antiox11091671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress induced by exercise has been a research field in constant growth, due to its relationship with the processes of fatigue, decreased production of muscle strength, and its ability to cause damage to the cell. In this context, photobiomodulation therapy (PBMT) has emerged as a resource capable of improving performance, while reducing muscle fatigue and muscle damage. To analyze the effects of PBMT about exercise-induced oxidative stress and compare with placebo therapy. Data Sources: Databases such as PubMed, EMBASE, CINAHL, CENTRAL, PeDro, and Virtual Health Library, which include Lilacs, Medline, and SciELO, were searched to find published studies. Study Selection: There was no year or language restriction; randomized clinical trials with healthy subjects that compared the application (before or after exercise) of PBMT to placebo therapy were included. Study Design: Systematic review with meta-analysis. Level of Evidence: 1. Data Extraction: Data on the characteristics of the volunteers, study design, intervention parameters, exercise protocol and oxidative stress biomarkers were extracted. The risk of bias and the certainty of the evidence were assessed using the PEDro scale and the GRADE system, respectively. Results: Eight studies (n = 140 participants) were eligible for this review, with moderate to excellent methodological quality. In particular, PBMT was able to reduce damage to lipids post exercise (SMD = −0.72, CI 95% −1.42 to −0.02, I2 = 77%, p = 0.04) and proteins (SMD = −0.41, CI 95% −0.65 to −0.16, I2 = 0%, p = 0.001) until 72 h and 96 h, respectively. In addition, it increased the activity of SOD enzymes (SMD = 0.54, CI 95% 0.07 to 1.02, I2 = 42%, p = 0.02) post exercise, 48 and 96 h after irradiation. However, PBMT did not increase CAT activity (MD = 0.18 CI 95% −0.56 to 0.91, I2 = 79%, p = 0.64) post exercise. We did not find any difference in TAC or GPx biomarkers. Conclusion: Low to moderate certainty evidence shows that PBMT is a resource that can reduce oxidative damage and increase enzymatic antioxidant activity post exercise. We found evidence to support that one session of PBMT can modulate the redox metabolism.
Collapse
Affiliation(s)
- Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo 03155-000, Brazil
- Correspondence:
| | - João Vitor Ferlito
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Marcos Vinicius Ferlito
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Mirian Salvador
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo 03155-000, Brazil
- ELJ Consultancy, Scientific Consultants, São Paulo 01153-000, Brazil
| |
Collapse
|
10
|
Bothrops moojeni snake venom induces an inflammatory response in preadipocytes: Insights into a new aspect of envenomation. PLoS Negl Trop Dis 2022; 16:e0010658. [PMID: 35939519 PMCID: PMC9359566 DOI: 10.1371/journal.pntd.0010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Bothrops envenomation is a public health problem in Brazil. Despite the advances in the knowledge of the pathogenesis of systemic and local effects induced by Bothrops venom, the target tissues to this venom are not completely characterised. As preadipocytes are important cells of the adipose tissue and synthesize inflammatory mediators, we investigated the ability of B. moojeni snake venom (Bmv) to stimulate an inflammatory response in 3T3-L1 preadipocytes in vitro, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1, KC, leptin and adiponectin; (2) the mechanisms involved in PGE2 release and (3) differentiation of these cells. Cytotoxicity of Bmv was determined by MTT assay. The concentrations of PGE2, cytokines and adipokines were quantified by EIA. Participation of the COX-1 and COX-2 enzymes, NF-κB and PGE2 receptors (EP1-4) was assessed using a pharmacological approach, and protein expression of the COX enzymes and P-NF-κB was analysed by western blotting. Preadipocyte differentiation was quantified by Oil Red O staining. Bmv (1 μg/mL) induced release of PGE2, IL-6 and KC and increased expression of COX-2 in preadipocytes. Basal levels of TNF-α, MCP-1, leptin and adiponectin were not modified. Treatment of cells with SC560 (COX-1 inhibitor) and NS398 (COX-2 inhibitor) inhibited Bmv-induced PGE2 release. Bmv induced phosphorylation of NF-κB, and treatment of the cells with TPCK and SN50, which inhibit distinct NF-κB domains, significantly reduced Bmv-induced PGE2 release, as did the treatment with an antagonist of PGE2 receptor EP1, unlike treatment with antagonists of EP2, EP3 or EP4. Bmv also induced lipid accumulation in differentiating cells. These results demonstrate that Bmv can activate an inflammatory response in preadipocytes by inducing the release of inflammatory mediators; that PGE2 production is mediated by the COX-1, COX-2 and NF-κB pathways; and that engagement of EP1 potentiates PGE2 synthesis via a positive feedback mechanism. Our findings highlight the role of the adipose tissue as another target for Bmv and suggest that it contributes to Bothrops envenomation by producing inflammatory mediators.
Collapse
|
11
|
Vieira WF, Kenzo-Kagawa B, Alvares LE, Cogo JC, Baranauskas V, da Cruz-Höfling MA. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation. Photochem Photobiol Sci 2021; 20:571-583. [PMID: 33895984 DOI: 10.1007/s43630-021-00041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno Kenzo-Kagawa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera - São Paulo, SP, Brazil
| | - Vitor Baranauskas
- Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil. .,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|