1
|
Tay YL, Ahmad MA, Mohamad Yahaya NH, Ajit Singh DK. Effects of photobiomodulation combined with rehabilitation exercise on pain, physical function, and radiographic changes in mild to moderate knee osteoarthritis: A randomized controlled trial protocol. PLoS One 2025; 20:e0314869. [PMID: 39836628 PMCID: PMC11750081 DOI: 10.1371/journal.pone.0314869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Photobiomodulation, specifically high-energy photobiomodulation therapy (H-PBMT), is gaining recognition as a promising non-invasive intervention for managing knee osteoarthritis (KOA). While H-PBMT has demonstrated effectiveness in reducing pain and improving physical function, most evidence to date focuses on short-term symptomatic relief. The potential for H-PBMT to offer sustained benefits and modify the underlying progression of KOA remains insufficiently explored, warranting further investigation. OBJECTIVE This study aims to assess the short-term and sustained effects of H-PBMT combined with rehabilitation exercises in patients with mild to moderate KOA, focusing on knee radiographic morphological changes over a 3-month follow-up period. METHODS This protocol outlines a parallel-group, randomized, double-blind, placebo-controlled trial. Fifty participants with mild to moderate KOA (based on the Kellgren-Lawrence classification) will be randomly assigned to either the active H-PBMT plus exercise group (H-PBMT+E, n = 25) or the placebo photobiomodulation plus exercise group (PL+E, n = 25). Both groups will undergo an 8-week intervention, consisting of conventional rehabilitation exercises paired with either active or placebo photobiomodulation. H-PBMT will be delivered using the BTL-6000 HIL device with a 1064 nm wavelength, providing a total energy dose of 3190 J per 15-minute session. The treatment protocol includes both pulse mode (25 Hz, 5 W, 190 J) for analgesia and continuous mode (5 W, 3000 J) for biostimulation. Participants will be blinded to their group allocation through the use of a placebo device that mimics the active treatment without emitting therapeutic energy. Additionally, the outcome assessors will be blinded to the group allocations to ensure unbiased evaluation of the trial outcomes. The primary outcome is the Knee Injury and Osteoarthritis Outcome Score. Secondary outcomes include the Timed Up-and-Go test, Numerical Pain Rating Scale, and knee X-rays. Outcomes will be evaluated at baseline, immediately post-intervention (week 8), and at 3-month follow-up (week 20). Data will be analyzed according to the intention-to-treat principle, with a two-way repeated measures ANOVA used to assess time, group, and interaction effects. CONCLUSION This study is expected to provide valuable insights into the sustained effects and potential disease-modifying properties of combining H-PBMT with rehabilitation exercises in managing KOA. The findings could inform more effective treatment protocols, improving rehabilitation outcomes and patient quality of life. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ACTRN12624000699561p).
Collapse
Affiliation(s)
- Yan Ling Tay
- Physiotherapy Programme & Centre for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Azzuan Ahmad
- Physiotherapy Programme & Centre for Rehabilitation and Special Needs Studies (iCaRehab), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedic and Traumatology at Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Devinder Kaur Ajit Singh
- Physiotherapy Programme & Center for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Lin YP, Ku CH, Chang CC, Chang ST. Effects of intravascular photobiomodulation on cognitive impairment and crossed cerebellar diaschisis in patients with traumatic brain injury: a longitudinal study. Lasers Med Sci 2023; 38:108. [PMID: 37076743 PMCID: PMC10115718 DOI: 10.1007/s10103-023-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The association between intravascular photobiomodulation (iPBM) and crossed cerebellar diaschisis (CCD) and cognitive dysfunction in patients with traumatic brain injury (TBI) remains unknown. We postulate that iPBM might enable greater neurologic improvements. The objective of this study was to evaluate the clinical impact of iPBM on the prognosis of patients with TBI. In this longitudinal study, patients who were diagnosed with TBI were recruited. CCD was identified from brain perfusion images when the uptake difference of both cerebella was > 20%. Thus, two groups were identified: CCD( +) and CCD( -). All patients received general traditional physical therapy and three courses of iPBM (helium-neon laser illuminator, 632.8 nm). Treatment assemblies were conducted on weekdays for 2 consecutive weeks as a solitary treatment course. Three courses of iPBM were performed over 2-3 months, with 1-3 weeks of rest between each course. The outcomes were measured using the Rancho Los Amigos Levels of Cognitive Functioning (LCF) tool. The chi-square test was used to compare categorical variables. Generalized estimating equations were used to verify the associations of various effects between the two groups. p < 0.05 indicated a statistically significant difference. Thirty patients were included and classified into the CCD( +) and CCD( -) groups (n = 15, each group). Statistics showed that before iPBM, CCD in the CCD( +) group was 2.74 (exp 1.0081) times higher than that of CCD( -) group (p = 0.1632). After iPBM, the CCD was 0.64 (exp-0.4436) times lower in the CCD( +) group than in the CCD( -) group (p < 0.0001). Cognitive assessment revealed that, before iPBM, the CCD( +) group had a non-significantly 0.1030 lower LCF score than that of CCD( -) group (p = 0.1632). Similarly, the CCD( +) group had a non-significantly 0.0013 higher score than that of CCD( -) after iPBM treatment (p = 0.7041), indicating no significant differences between the CCD( +) or CCD( -) following iPBM and general physical therapy. CCD was less likely to appear in iPBM-treated patients. Additionally, iPBM was not associated with LCF score. Administration of iPBM could be applied in TBI patients to reduce the occurrence of CCD. The study failed to show differences in cognitive function after iPBM, which still serves as an alternative non-pharmacological intervention.
Collapse
Affiliation(s)
- Yen-Po Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medical Education and Research, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Hung Ku
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chiang Chang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Neihu District, # 161, Section 6, Minquan East Road, Taipei, 114201, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Neihu District, # 161, Section 6, Minquan East Road, Taipei, 114201, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Zuoying Dist., # 386, Dazhong 1st Rd., 813414, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Chen D, Chang P, Ding P, Liu S, Rao Q, Okoro OV, Wang L, Fan L, Shavandi A, Nie L. MSCs-laden silk Fibroin/GelMA hydrogels with incorporation of platelet-rich plasma for chondrogenic construct. Heliyon 2023; 9:e14349. [PMID: 36925544 PMCID: PMC10010988 DOI: 10.1016/j.heliyon.2023.e14349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Repair of osteochondral defects and regeneration of cartilage is a major challenge. In this work, the mesenchymal stem cells (MSCs)-laden hydrogel was designed using silk fibroin (SF) and gelatin methacrylate (GelMA), to encapsulate platelet-rich plasma (PRP). Initially, GelMA was synthesized, and SF was prepared using silkworm cocoon, then MSCs-laden SF/GelMA (SG) hydrogel was fabricated. The physicochemical properties of the hydrogels were evaluated using Fourier-transform infrared spectroscopy, scanning electron microscope, and rheometry. After hydrogel preparation, the viability of MSCs in the hydrogels was investigated via CCK-8 analysis and fluorescent images. The MSCs-laden SG hydrogel containing PRP was subsequently injected into the cartilage defect area in Sprague Dawley rats. Hematoxylin and eosin (H&E), Masson staining, and Mankin scores evaluation confirmed the new cartilage formation in 8 weeks. The results presented in the study, therefore, showed that the prepared MSCs-laden SG hydrogel loaded with PRP has the potential for cartilage reconstruction, which is crucial to the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Dong Chen
- Department of Orthopedics, Affiliated Hospital of Jianghan University, Wuhan 430015, China
| | - Pengbo Chang
- Zhengzhou Technical College, Zhengzhou 450121, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Rao
- Department of Orthopedics, Wuhan Hanyang Hospital, Wuhan University of Science and Technology, Wuhan 430050, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Lingling Wang
- Analysis & Testing Center, Xinyang Normal University, Xinyang 464000, China
- Corresponding author.
| | - Lihong Fan
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- Corresponding authors. School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
- Corresponding author. Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium.
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
- Corresponding authors. College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China.
| |
Collapse
|
4
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
5
|
Short-Term Efficacy of High-Intensity Laser Therapy in Alleviating Pain in Patients with Knee Osteoarthritis: A Single-Blind Randomised Controlled Trial. Pain Res Manag 2022; 2022:1319165. [PMID: 36313402 PMCID: PMC9616657 DOI: 10.1155/2022/1319165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Objectives The aim of the study is to evaluate the efficacy of high-intensity laser therapy (HILT) on pain reduction in patients with knee osteoarthritis (OA). Methods Forty-two patients diagnosed with primary knee OA, with a Kellgren–Lawrence classification of 2–4, were recruited into the study. The patients were randomly allocated to two groups: HILT and control. The intervention group received HILT (energy density of 22.39 J/cm2, 562.5 joule/session), while the control group received a sham laser, which was done 2–3 sessions per week for a total of 10 sessions. Both the groups also received the same conservative treatment. The main outcome measures were the visual analogue scale (VAS) and the modified Thai version of the Western Ontario and McMaster Universities Osteoarthritis Index (T-WOMAC) which were evaluated at baseline and immediately after treatment completion. Results At the end of the study, the overall analysis showed a significant decrease in VAS and T-WOMAC scores in both the groups; a greater decrease in scores was found in the HILT group than in the control group (p < 0.001). The between-group comparison also showed a significant difference in VAS, but not in the T-WOMAC score, favouring HILT (p < 0.05). Conclusion The HILT plus conservative treatment can help alleviate pain in patients with knee OA. The findings of the present study could be used in clinical practice to add HILT as another noninvasive treatment option for knee OA. This could be advantageous, particularly for individuals who are at high risk of surgery due to multiple comorbidities or older people. Trial Registration. This clinical trial registration was performed at Clinical.gov (NCT04889885).
Collapse
|
6
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
7
|
Short- and Long-Term Effectiveness of Low-Level Laser Therapy Combined with Strength Training in Knee Osteoarthritis: A Randomized Placebo-Controlled Trial. J Clin Med 2022; 11:jcm11123446. [PMID: 35743513 PMCID: PMC9225274 DOI: 10.3390/jcm11123446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Both physical activity and low-level laser therapy (LLLT) can reduce knee osteoarthritis (KOA) inflammation. We conducted a randomized clinical trial to investigate the short- and long-term effectiveness of LLLT combined with strength training in persons with KOA. Methods: Fifty participants were randomly divided in two groups, one with LLLT plus strength training (n = 26) and one with placebo LLLT plus strength training (n = 24). LLLT and strength training were performed triweekly for 3 and 8 weeks, respectively. In the laser group, 3 joules 904 nm wavelength laser was applied to fifteen points (45 joules) per knee per session. Patient-reported outcomes, physical tests, and ultrasonography assessments were performed at baseline and 3, 8, 26, and 52 weeks after initial LLLT or placebo therapy. The primary outcomes were pain on movement, at rest, at night (Visual Analogue Scale), and globally (Knee injury and Osteoarthritis Outcome Score (KOOS) subscale). Parametric data were assessed with analysis of variance using Šidák’s correction. Results: There were no significant between-group differences in the primary outcomes. However, in the laser group there was a significantly reduced number of participants using analgesic and non-steroidal anti-inflammatory drugs and increased performance in the sit-to-stand test versus placebo-control at week 52. The joint line pain pressure threshold (PPT) improved more in the placebo group than in the laser group, but only significantly at week 8. No other significant treatment effects were present. However, pain on movement and joint line PPT were worse in the placebo group at baseline, and therefore, it had more room for improvement. The short-term percentage of improvement in the placebo group was much higher than in similar trials. Conclusions: Pain was reduced substantially in both groups. LLLT seemed to provide a positive add-on effect in the follow-up period in terms of reduced pain medication usage and increased performance in the sit-to-stand test.
Collapse
|
8
|
Barisón MJ, Nogoceke R, Josino R, Horinouchi CDDS, Marcon BH, Correa A, Stimamiglio MA, Robert AW. Functionalized Hydrogels for Cartilage Repair: The Value of Secretome-Instructive Signaling. Int J Mol Sci 2022; 23:ijms23116010. [PMID: 35682690 PMCID: PMC9181449 DOI: 10.3390/ijms23116010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome—a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells—of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.
Collapse
|
9
|
Oliveira S, Andrade R, Hinckel BB, Silva F, Espregueira-Mendes J, Carvalho Ó, Leal A. In Vitro and In Vivo Effects of Light Therapy on Cartilage Regeneration for Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13:1700S-1719S. [PMID: 33855869 PMCID: PMC8804850 DOI: 10.1177/19476035211007902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To analyze the effects of light therapy (LT) on cartilage repair for knee osteoarthritis (OA) treatment. DESIGN The PubMed, Embase, Scopus, and Web of Science databases were searched up to August 31, 2020 to identify in vitro and in vivo studies that analyzed the effects of LT on knee cartilage for OA treatment. The study and sample characteristics, LT intervention parameters and posttreatment outcomes were analyzed. Risk of bias was assessed using the Risk of Bias Assessment for Non-randomized Studies (RoBANS) tool. RESULTS Three in vitro and 30 in vivo studies were included. Most studies were judged as high risk of performance and detection bias. Biochemical outcomes were analyzed for both in vitro and in vivo studies, and histological and behavioral outcomes were analyzed for in vivo studies. LT reduced extracellular matrix (ECM) degradation, inflammation, and OA progression, promoting ECM synthesis. LT improved pain-like behavior in animal models, having no apparent effect on gait performance. There were conflicting findings of some of the biochemical, histological, and behavioral outcomes. CONCLUSION The included studies presented different strategies and LT parameters. LT resulted in positive effects on cartilage repair and may be an adequate therapy for OA treatment.
Collapse
Affiliation(s)
- Sofia Oliveira
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes
Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal,Dom Henrique Research Centre, Porto,
Portugal,Faculty of Sports, University of Porto,
Porto, Portugal
| | - Betina B. Hinckel
- Department of Orthopaedic Surgery,
William Beaumont Hospital, Royal Oak, MI, USA
| | - Filipe Silva
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes
Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal,Dom Henrique Research Centre, Porto,
Portugal,ICVS/3B’s-PT Government Associate
Laboratory, Braga/Guimarães, Portugal,3Bs Research Group–Biomaterials,
Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence
on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães,
Portugal,School of Medicine, University of
Minho, Braga, Portugal
| | - Óscar Carvalho
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Ana Leal
- Center for Micro-ElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal,Dom Henrique Research Centre, Porto,
Portugal,Ana Leal, Center for MicroElectroMechanical
Systems (CMEMS-UMINHO), University of Minho, Azurém Campus, Guimarães, 4800-058,
Portugal.
| |
Collapse
|
10
|
Effectiveness of Low-Level Laser Therapy Associated with Strength Training in Knee Osteoarthritis: Protocol for a Randomized Placebo-Controlled Trial. Methods Protoc 2021; 4:mps4010019. [PMID: 33804559 PMCID: PMC7931026 DOI: 10.3390/mps4010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Physical activity and low-level laser therapy (LLLT) can reduce knee osteoarthritis (KOA) inflammation. We are conducting a randomized placebo-controlled trial to investigate the long-term effectiveness of LLLT combined with strength training (ST) in persons with KOA, since it, to our knowledge, has not been investigated before. Fifty participants were enrolled. LLLT and ST was performed 3 times per week over 3 and 8 weeks, respectively. In the LLLT group, 3 Joules of 904 nm wavelength laser was applied to 15 spots per knee (45 Joules/knee/session). The primary outcomes are pain during movement, at night and at rest (Visual Analogue Scale) and global pain (Knee injury and Osteoarthritis Outcome Score, KOOS) pain subscale. The secondary outcomes are KOOS disability and quality-of-life, analgesic usage, global health change, knee active range of motion, 30 s chair stand, maximum painless isometric knee extension strength, knee pain pressure threshold and real-time ultrasonography-assessed suprapatellar effusion, meniscal neovascularization and femur cartilage thickness. All the outcomes are assessed 0, 3, 8, 26 and 52 weeks post-randomization, except for global health change, which is only evaluated at completed ST. This study features the blinding of participants, assessors and therapists, and will improve our understanding of what occurs with the local pathophysiology, tissue morphology and clinical status of persons with KOA up to a year after the initiation of ST and a higher 904 nm LLLT dose than in any published trial on this topic.
Collapse
|