1
|
Farazi N, Salehi-Pourmehr H, Farajdokht F, Mahmoudi J, Sadigh-Eteghad S. Photobiomodulation combination therapy as a new insight in neurological disorders: a comprehensive systematic review. BMC Neurol 2024; 24:101. [PMID: 38504162 PMCID: PMC10949673 DOI: 10.1186/s12883-024-03593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.
Collapse
Affiliation(s)
- Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
2
|
De Miguel-Rubio A, Gallego-Aguayo I, De Miguel-Rubio MD, Arias-Avila M, Lucena-Anton D, Alba-Rueda A. Effectiveness of the Combined Use of a Brain-Machine Interface System and Virtual Reality as a Therapeutic Approach in Patients with Spinal Cord Injury: A Systematic Review. Healthcare (Basel) 2023; 11:3189. [PMID: 38132079 PMCID: PMC10742447 DOI: 10.3390/healthcare11243189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Spinal cord injury has a major impact on both the individual and society. This damage can cause permanent loss of sensorimotor functions, leading to structural and functional changes in somatotopic regions of the spinal cord. The combined use of a brain-machine interface and virtual reality offers a therapeutic alternative to be considered in the treatment of this pathology. This systematic review aimed to evaluate the effectiveness of the combined use of virtual reality and the brain-machine interface in the treatment of spinal cord injuries. A search was performed in PubMed, Web of Science, PEDro, Cochrane Central Register of Controlled Trials, CINAHL, Scopus, and Medline, including articles published from the beginning of each database until January 2023. Articles were selected based on strict inclusion and exclusion criteria. The Cochrane Collaboration's tool was used to assess the risk of bias and the PEDro scale and SCIRE systems were used to evaluate the methodological quality of the studies. Eleven articles were selected from a total of eighty-two. Statistically significant changes were found in the upper limb, involving improvements in shoulder and upper arm mobility, and weaker muscles were strengthened. In conclusion, most of the articles analyzed used the electroencephalogram as a measurement instrument for the assessment of various parameters, and most studies have shown improvements. Nonetheless, further research is needed with a larger sample size and long-term follow-up to establish conclusive results regarding the effect size of these interventions.
Collapse
Affiliation(s)
- Amaranta De Miguel-Rubio
- Department of Nursing, Pharmacology and Physiotherapy, University of Cordoba, 14004 Cordoba, Spain; (I.G.-A.); (A.A.-R.)
| | - Ignacio Gallego-Aguayo
- Department of Nursing, Pharmacology and Physiotherapy, University of Cordoba, 14004 Cordoba, Spain; (I.G.-A.); (A.A.-R.)
| | | | - Mariana Arias-Avila
- Physical Therapy Department, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil;
| | - David Lucena-Anton
- Department of Nursing and Physiotherapy, University of Cadiz, 11009 Cadiz, Spain;
| | - Alvaro Alba-Rueda
- Department of Nursing, Pharmacology and Physiotherapy, University of Cordoba, 14004 Cordoba, Spain; (I.G.-A.); (A.A.-R.)
| |
Collapse
|
3
|
Silva T, Tobelem DDC, Malavazzi TCDS, Mendonça JFBD, Andreo L, Chavantes MC, Tempestini Horliana ACR, Turcio KHL, Gomes AO, Deana AM, Fernandes KPS, Motta LJ, Mesquita-Ferrari RA, Brugnera A, Nammour S, Bussadori SK. Effect of Photobiomodulation Combined with Physiotherapy on Functional Performance in Children with Myelomeningo-Cele-Randomized, Blind, Clinical Trial. J Clin Med 2023; 12:jcm12082920. [PMID: 37109256 PMCID: PMC10142114 DOI: 10.3390/jcm12082920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the electrical activity of the rectus femoris, tibialis anterior, and lateral gastrocnemius muscles during the sit-to-stand task and functional mobility after a neurofunctional physiotherapy protocol associated with PBM. METHODS Twenty-five children were randomly allocated to either Active PBM + physiotherapy (n = 13) or PBM sham + physiotherapy (n = 12). PBM was carried out with a LED device (850 nm, 25 J, 50 s per point and 200 mW) at four points over the area with absence of a spiny process. Both groups completed a twelve-week supervised program with two weekly 45-60 min sessions. Pre-training and post-training assessments involved the Pediatric Evaluation of Disability Inventory (PEDI). Muscle activity was assessed using portable electromyography (BTS Engineering) and the electrodes were positioned on the lateral gastrocnemius, anterior tibialis, and rectus femoris muscles. The RMS data were recorded and analyzed. RESULTS After 24 sessions of the treatment protocol, improvements were found in the PEDI score. The participants presented greater independence in performing the tasks, requiring less assistance from their caregivers. More significant electrical activity was found in the three muscles evaluated between the rest period and execution of the sit-to-stand tasks, both in the more compromised or less compromised lower limbs. CONCLUSION Neurofunctional physiotherapy with or without PBM improved functional mobility and electrical muscle activity in children with myelomeningocele.
Collapse
Affiliation(s)
- Tamiris Silva
- University Nove de Julho (UNINOVE), São Paulo 01525-000, SP, Brazil
| | | | | | | | - Lucas Andreo
- University Nove de Julho (UNINOVE), São Paulo 01525-000, SP, Brazil
| | | | | | | | | | | | | | | | | | - Aldo Brugnera
- Physics Institute of São Carlos, University of the São Paulo, São Paulo 11330-900, SP, Brazil
| | | | | |
Collapse
|
4
|
Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury. Int J Pharm 2022; 628:122285. [DOI: 10.1016/j.ijpharm.2022.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
|
5
|
de Souza Contatori CG, Silva CR, de Toledo Pereira S, Rodrigues MFSD, de Lima Luna AC, Marques MM, Ribeiro MS. Responses of melanoma cells to photobiomodulation depend on cell pigmentation and light parameters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112567. [PMID: 36115314 DOI: 10.1016/j.jphotobiol.2022.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Melanoma is a highly aggressive skin cancer that requires new approaches for its management. Low-level laser therapy, currently named photobiomodulation therapy (PBM), has been used to improve different conditions but its effects and safe use on melanoma remain unexplored. Herein, we investigated the PBM impact on melanoma cells differing by pigmentation using near-infrared (NIR) and red lasers in vitro. In vivo, we evaluated the effects of the red laser on melanoma-bearing mice. Amelanotic (SK-MEL-37) and melanotic (B16F10) cells were exposed in vitro to a NIR (780 nm, 40 mW) or a red laser (660 nm, 40 mW) in 3 different light doses: 30, 90, and 150 J/cm2 and responses were assessed regarding mitochondrial activity, invasiveness, migration, and VEGF production. In vivo, melanoma-bearing mice received the red laser delivering 150 J/cm2 directly to the tumor on 3 consecutive days. Mice were monitored for 15 days regarding tumor progression and mouse survival. We noticed that amelanotic cells were unresponsive to NIR light. In contrast, NIR irradiation at 30 J/cm2 promoted an increase in the invasiveness of pigmented cells, even though all light doses have inhibited cell migration. Regarding the red laser on pigmented cells, the highest light dose (150 J/cm2) decreased the VEGF production and migration. In vivo, melanoma-bearing mice treated with red laser showed smaller tumor volume and longer survival than controls. We conclude that PBM appears to be safe for amelanotic non-pigmented melanoma but triggers different responses in melanotic pigmented cells depending on light parameters. Additionally, a high dose of red laser impairs the invasive behavior of melanoma cells, probably due to the decrease in VEGF synthesis, which may have contributed to tumor arrest and increased mouse survival. These findings suggest that red laser therapy could be a new ally in the supportive care of melanoma patients.
Collapse
Affiliation(s)
| | - Camila Ramos Silva
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, SP, Brazil
| | - Saulo de Toledo Pereira
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, SP, Brazil
| | | | | | - Marcia Martins Marques
- AALZ - Aachen Dental Laser Center, RWTH Aachen University, Aachen, Germany; School of Dentistry, Ibirapuera University, São Paulo, SP, Brazil
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Gavish L, Gilon D, Beeri R, Nachman D, Gertz SD. Photobiomodulation for Abdominal Aortic Aneurysm: Can It Work? Photobiomodul Photomed Laser Surg 2022; 40:519-521. [DOI: 10.1089/photob.2022.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lilach Gavish
- The Saul and Joyce Brandman Hub for Cardiovascular Research and the Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
| | - Dan Gilon
- Heart Institute, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ronen Beeri
- Heart Institute, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dean Nachman
- Heart Institute, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - S. David Gertz
- The Saul and Joyce Brandman Hub for Cardiovascular Research and the Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel
| |
Collapse
|
7
|
Liang Z, Lei T, Wang S, Li P, Chen B, Pan D, Zhang Y, Zuo X, Wang X, Luo Z, Hu X, Ding T, Wang Z. Clinical safety study of photobiomodulation in acute spinal cord injury by scattering fiber. Lasers Med Sci 2022; 37:3433-3442. [PMID: 35816215 DOI: 10.1007/s10103-022-03601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
Abstract
The study aimed to design a reliable and straightforward PBM method by implanting a medical scattering fiber above surgically exposed spinal cord in SCI patients. Moreover, the safety of this method was examined. Twelve patients with acute SCI (ASIA B) requiring posterior decompression were recruited. The medical scattering fiber was implanted above the spinal cord, and was continuously irradiated at 810 nm, 300 mW, 30 min/day, once per day for 7 days. The vital signs (temperature, blood pressure, respiratory rate, heart rate, and oxygen saturation), infection indicators (WBC, NEUT, hs-CRP, and PCT), photo-allergic reaction indicators (Eosinophil and Basophil), coagulation function indicators (PT, APTT, TT) and neurological stability indicators (ASIA sensory and motor scores) were recorded to evaluate the safety of PBM. Three months after surgery, 12 patients completed follow-up. In our study, direct PBM on SCI site did not cause clinically pathologic changes in vital signs of the patients. All patients had higher WBC, NEUT, and hs-CRP at day 3 during irradiation than those before surgery, and returned to normal at day 7. The changes in Eosinophil and Basophil that were closely associated with allergic reactions were within normal limits throughout the course of irradiation. The coagulation function (PT, APTT, and TT) of patients were also in the normal range. The ASIA sensory and motor scores of all patients had no changes throughout the irradiation process. However, in the follow-up, both ASIA sensory and motor scores of all patients had minor improvement than those in pre-irradiation, and 7 patients had adverse events, but they were not considered to be related to PBM. Our study might firstly employ direct PBM in the SCI by using scattered optical fibers. In a limited sample size, our study concluded that direct PBM at the site of SCI would not produce adverse effects within the appropriate irradiation parameters. The method is safe, feasible, and does not add additional trauma to the patient. Our preliminary study might provide a new methodology for the clinical PBM treatment of acute SCI.
Collapse
Affiliation(s)
- Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Tao Lei
- School of Biomedical Engineering, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Pan Li
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research Northwestern, Polytechnical University, Xi'an, Shaanxi, China
| | - Beiyu Chen
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongsheng Pan
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yongfeng Zhang
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Wang Y, Yuan H. Research progress of endogenous neural stem cells in spinal cord injury. IBRAIN 2022; 8:199-209. [PMID: 37786888 PMCID: PMC10529172 DOI: 10.1002/ibra.12048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 10/04/2023]
Abstract
Spinal cord injury (SCI) is a severe disabling disease, which mainly manifests as impairments of sensory and motor functions, sexual function, bladder and intestinal functions, respiratory and cardiac functions below the injury plane. In addition, the condition has a profound effect on the mental health of patients, which often results in severe sequelae. Some patients may be paraplegic for life or even die, which places a huge burden on the family and society. There is still no effective treatment for SCI. Studies have confirmed that endogenous neural stem cells (ENSCs), as multipotent neural stem cells, which are located in the ependymal region of the central canal of the adult mammalian spinal cord, are activated after SCI and then differentiate into various nerve cells to promote endogenous repair and regeneration. However, the central canal of the spinal cord is often occluded to varying degrees in adults, and residual ependymal cells cannot be activated and do not proliferate after SCI. Besides, the destruction of the microenvironment after SCI is also an important factor that affects the proliferation and differentiation of ENSCs and spinal cord repair. Therefore, this review describes the role of ENSCs in SCI, in terms of the origin, transformation, treatment, and influencing factors, to provide new ideas for clinical treatment of SCI.
Collapse
Affiliation(s)
- Ya‐Ting Wang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Hao Yuan
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
9
|
Yu Q, Jiang X, Liu X, Shen W, Mei X, Tian H, Wu C. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112668. [DOI: 10.1016/j.msec.2022.112668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
|
10
|
Silva T, de Queiroz JR, Turcio KHL, Tobelem DDC, Araújo TR, Coutinho KSL, Chavantes MC, Horliana ACRT, Deana AM, da Silva DDFT, Castelo PM, Fernandes KPS, Motta LJ, Mesquita-Ferrari RA, Kalil Bussadori S. Effect of photobiomodulation combined with physical therapy on functional performance in children with myelomeningocele: A protocol randomized clinical blind study. PLoS One 2021; 16:e0253963. [PMID: 34613973 PMCID: PMC8494316 DOI: 10.1371/journal.pone.0253963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Myelomeningocele is a severe type of spina bifida, resulting from improper closure of the neural tube. This condition drastically affects the structures of the spinal cord resulting in deficiencies. The combination of these deficiencies results in an overall decrease in mobility and functional participation amongst this population. Physiotherapy plays an essential role in rehabilitating people with MMC. The current literature shows that resources such as photobiomodulation (PBM) may support the rehabilitation of neurological conditions. The aim of the proposed study is to evaluate the effects of photobiomodulation (PBM) combined with physical therapy on functional performance in children with low lumbosacral myelomeningocele. MATERIALS AND METHODS This is a protocol randomized clinical blind study, that will include 30 individuals of both sexes, aged between 5 to 8 years, diagnosed with low and sacral lumbar myelomeningocele and capable of performing the sit-to-stand task. The participants will be randomly assigned into two treatment groups: PBM + physiotherapeutic exercises and sham PBM + physiotherapeutic exercises. Irradiation will be carried out with light emitting diode (LED) at a wavelength of 850 nm, energy of 25 J per point, 50 seconds per point and a power of 200 mW. The same device will be used in the placebo group but will not emit light. Muscle activity will be assessed using a portable electromyograph (BTS Engineering) and the sit-to-stand task will be performed as a measure of functioning. Electrodes will be positioned on the lateral gastrocnemius, tibialis anterior and rectus femoris muscles. The Pediatric Evaluation of Disability Inventory will be used to assess functional independence. Quality of life will be assessed using the Child Health Questionnaire-Parent Form 50. Changes in participation will be assessed using the Participation and Environment Measure for Children and Youth. The data will be analyzed with the aid of GraphPad PRISM. DISCUSSION The results of this study can contribute to a better understanding of the effectiveness of PBM on functioning and quality of life in children with myelomeningocele. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04425330.
Collapse
Affiliation(s)
- Tamiris Silva
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Farazi N, Mahmoudi J, Sadigh-Eteghad S, Farajdokht F, Rasta SH. Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress. Lasers Med Sci 2021; 37:1181-1191. [PMID: 34432186 DOI: 10.1007/s10103-021-03370-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
The development of anxiety and depression due to chronic exposure to noise stress has remained as an unsolved health problem so far. Despite the studies suggesting the neuroenhancement effects of transcranial photobiomodulation (tPBM) and housing in an enriched environment (EE), the combined effects of these treatments have not been elucidated yet. Also, there is no available data on the relationship between the application of tPBM and hippocampal brain-derived neurotrophic factor (BDNF) expression in animal models of stress. The present study aims to investigate the application of the tPBM and EE (alone or in combination) on depressive- and anxiety-like behaviors in a mice model of noise stress. Mice were divided into five groups: control, noise, noise + EE, noise + tPBM, and noise + EE + tPBM. Except for the control group, other groups were subjected to 110 dB SPL white noise for 4 h/day for 14 consecutive days and received their respective treatments. Forced Swimming Test (FST) was used to evaluate depressive-like behaviors. Elevated Plus Maze (EPM) and Open Field Test (OFT) were used to evaluate anxiety-like behaviors. BDNF, tyrosine receptor kinase B (TrkB), and cAMP response element-binding (CREB) protein levels in the hippocampus were determined by the Western blot method, and also serum corticosterone levels were assessed using an ELISA kit. Exposure to noise stress significantly elevated serum corticosterone level; downregulated hippocampal BDNF, TrkB, and CREB protein expressions; and resulted in depressive- and anxiety-like behaviors. While, the application of tPBM (810 nm wavelength, 8 J/cm2 fluence, 10 Hz pulsed wave mode), housing in EE, and their combination lowered corticosterone levels, upregulated the BDNF/TrkB/CREB signaling pathway in the hippocampus, and improved behavioral outcomes in noise stress subjected mice. Our finding revealed the improving effects of tPBM and EE on depressive and anxiety-like behaviors induced by noise stress, possibly by augmenting the BDNF/TrkB/CREB signaling pathway.
Collapse
Affiliation(s)
- Narmin Farazi
- Department of Medical Physics, Tabriz University of Medical Sciences, 51666-14766, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, 51666-14766, Tabriz, Iran. .,Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran. .,School of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
12
|
Hassan MP, Abdollahifar MA, Aliaghaei A, Tabeie F, Vafaei-Nezhad S, Norouzian M, Abbaszadeh HA. Photobiomodulation therapy improved functional recovery and overexpression of interleukins-10 after contusion spinal cord injury in rats. J Chem Neuroanat 2021; 117:102010. [PMID: 34343596 DOI: 10.1016/j.jchemneu.2021.102010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022]
Abstract
Following severe Spinal Cord Injury (SCI), regeneration is inadequate, and functional recovery is incomplete. The occurrence of oxidative stress and the spread of inflammation play a crucial role in the failure to regenerate the injury site. In this way, we explored the neuroprotective effects of PhotoBioModulation (PBM), as the main factor in controlling these two destructive factors, on SCI. fifty-four female adult Wistar rats divided into three groups: sham group (just eliminate vertebra lamina, n = 18), SCI group (n = 18), and SCI-PBM group which exposed to PBM (150 MW, 50 min/day, 14 days, n = 18). After SCI induction at the endpoint of the study (the end of 8 week), we took tissue samples from the spinal cord for evaluating the biochemical profiles that include Catalase (CAT), Malondialdehyde (MDA), Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-PX) levels, immunohistochemistry for Caspase-3, gene expressions of Interleukin-1β (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), and Interleukin (IL-10). Also, stereological assessments evaluated the spinal cord, central cavity volumes, and numerical density of the glial and neural cells in the traumatic area. The open-field test, rotarod test, Narrow Beam Test (NBT), Electromyography recording (EMG) test and the Basso-Beattie-Bresnehan (BBB) evaluated the neurological functions. Our results showed that the stereological parameters, biochemical profiles (except MDA), and neurological functions were markedly greater in the SCI-PBM group in comparison with SCI group. The transcript for the IL-10 gene was seriously upregulated in the SCI-PBM group compared to the SCI group. This is while gene expression of TNF-α and IL-1β, also density of apoptosis cells in Caspase-3 evaluation decreased significantly more in the SCI-PBM group compared to the SCI group. Overall, using PBM treatment immediately after SCI has neuroprotective effects by controlling oxidative stress and inflammation and preventing the spread of damage.
Collapse
Affiliation(s)
- Mahnaz Poor Hassan
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|