1
|
Adly AS, Adly MS, Cuisinier F, Egea JC, Panayotov I, Adly AS, Malthiery E. Laser-Induced Blood Coagulation for Surgical Application: A Scoping Review. Semin Thromb Hemost 2024; 50:236-252. [PMID: 37611623 DOI: 10.1055/s-0043-1772573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
There is a lack of evidence-based reviews on the effects of laser irradiation on blood coagulation in the literature, despite a large number of clinical trials. We therefore evaluated the available evidence on laser irradiation parameters used in coagulation of blood to optimize physical parameters. We performed a literature search for recent scientific studies indexed between 2017 and 2023 using the databases of PubMed and ScienceDirect. Articles were selected based on defined inclusion and exclusion criteria, and 78 publications in total were eventually included in this scoping review. The following were found to produce significant benefits in blood coagulation for surgical application: (1) dentistry and oral surgeries: 980 nm, 27 s, 2 W, 1502.7 W/cm2, 26.5 J, 622 J/cm2, 400 μm; (2) urogenital disorders: 532 nm, 4 s, 40 W, 10600 W/cm2, 1.3 J, 424 J/cm2, 600 μm; (3) ophthalmic disorders: 810 nm, 1 s, 1 W, 3540 W/cm2, 0.75 J, 1326 J/cm2, 100 μm; (4) embryological surgeries: 1064 nm, 10 s, 25 W, 35400 W/cm2, 262.5 J, 371000 J/cm2, 332.5 μm; (5) dermatological disorders: 1064 nm, 20 W, 2440 W/cm2, 0.1 J, 24 J/cm2, 670 μm; (6) gastrointestinal disorders: 532 nm, 3 s, 20 W, 1051 W/cm2, 120 J, 26500 J/cm2, 760 μm; (7) neurological surgeries: 2.5 s, 1.5 W, 1035 W/cm2, 2 J, 1584 J/cm2, 385 μm; (8) pulmonary disorders: 1320 nm, 5s, 35 W, 12450 W/cm2, 250 J, 65000 J/cm2, 700 μm (9) cardiovascular disorders: 1064 nm, 16.5 s, 5 W, 1980.5 W/cm2, 900 J, 760 J/cm2, 400 μm. In conclusion, our scoping review identifies that combining data from all clinically heterogeneous studies suggests that laser irradiation reflects an effective method for inducing blood coagulation in several medical fields.
Collapse
Affiliation(s)
| | - Mahmoud Sedky Adly
- LBN, Univ Montpellier, Montpellier, France
- Royal College of Surgeons of Edinburgh, Scotland, United Kingdom
| | - Frederic Cuisinier
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| | - Jean-Christophe Egea
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| | - Ivan Panayotov
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| | | | - Eve Malthiery
- LBN, Univ Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
- UFR Odontologie, Univ. Montpellier, Montpellier, France
| |
Collapse
|
2
|
Li KD, Jones CP, Hakam N, Erickson BA, Vanni AJ, Chancellor MB, Breyer BN. Haemorrhagic cystitis: a review of management strategies and emerging treatments. BJU Int 2023; 132:631-637. [PMID: 37501638 DOI: 10.1111/bju.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Haemorrhagic cystitis (HC) is characterised by persistent haematuria and lower urinary tract symptoms following radiotherapy or chemotherapy. Its pathogenesis is poorly understood but thought to be related to acrolein toxicity following chemotherapy or fibrosis/vascular remodelling after radiotherapy. There is no standard of care for patients with HC, although existing strategies including fulguration, hyperbaric oxygen therapy, botulinum toxin A, and other intravesical therapies have demonstrated short-term efficacy in cohort studies. Novel agents including liposomal tacrolimus are promising targets for further research. This review summarises the incidence and pathogenesis of HC as well as current evidence supporting its different management strategies.
Collapse
Affiliation(s)
- Kevin D Li
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Charles P Jones
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Nizar Hakam
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | | | - Alex J Vanni
- Department of Urology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Michael B Chancellor
- Department of Urology, Oakland University William Beaumont School of Medicine, Royal Oaks, MI, USA
| | - Benjamin N Breyer
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Wang Y, Zhu Y, Xu X. Advances in the management of radiation-induced cystitis in patients with pelvic malignancies. Int J Radiat Biol 2023; 99:1307-1319. [PMID: 36940182 DOI: 10.1080/09553002.2023.2181996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVE Radiotherapy plays a vital role as a treatment for malignant pelvic tumors, in which the bladder represents a significant organ at risk involved during tumor radiotherapy. Exposing the bladder wall to high doses of ionizing radiation is unavoidable and will lead to radiation cystitis (RC) because of its central position in the pelvic cavity. Radiation cystitis will result in several complications (e.g. frequent micturition, urgent urination, and nocturia) that can significantly reduce the patient's quality of life and in very severe cases become life-threatening. METHODS Existing studies on the pathophysiology, prevention, and management of radiation-induced cystitis from January 1990 to December 2021 were reviewed. PubMed was used as the main search engine. Besides the reviewed studies, citations to those studies were also included. RESULTS AND DISCUSSIONS In this review, the symptoms of radiation cystitis and the mainstream grading scales employed in clinical situations are presented. Next, preclinical and clinical research on preventing and treating radiation cystitis are summarized, and an overview of currently available prevention and treatment strategies as guidelines for clinicians is provided. Treatment options involve symptomatic treatment, vascular interventional therapy, surgery, hyperbaric oxygen therapy (HBOT), bladder irrigation, and electrocoagulation. Prevention includes filling up the bladder to remove it from the radiation field and delivering radiation based on helical tomotherapy and CT-guided 3D intracavitary brachytherapy techniques.
Collapse
Affiliation(s)
- Yimin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoting Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Choi J, Sun IC, Sook Hwang H, Yeol Yoon H, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliv Rev 2022; 186:114344. [PMID: 35580813 DOI: 10.1016/j.addr.2022.114344] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic nanomedicines have significantly enhanced the therapeutic efficacy of photosensitizers (PSs) by overcoming critical limitations of PSs such as poor water solubility and low tumor accumulation. Furthermore, functional photodynamic nanomedicines have enabled overcoming oxygen depletion during photodynamic therapy (PDT) and tissue light penetration limitation by supplying oxygen or upconverting light in targeted tumor tissues, resulting in providing the potential to overcome biological therapeutic barriers of PDT. Nevertheless, their localized therapeutic effects still remain a huddle for the effective treatment of metastatic- or recurrent tumors. Recently, newly designed photodynamic nanomedicines and their combination chemo- or immune checkpoint inhibitor therapy enable the systemic treatment of various metastatic tumors by eliciting antitumor immune responses via immunogenic cell death (ICD). This review introduces recent advances in photodynamic nanomedicines and their applications, focusing on overcoming current limitations. Finally, the challenges and future perspectives of the clinical translation of photodynamic nanomedicines in cancer PDT are discussed.
Collapse
Affiliation(s)
- Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|