1
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Sugito SFA, Wibrianto A, Chang JY, Fahmi MZ, Khairunisa SQ, Sakti SCW, Ahmad MA, Hwei Voon L, Nikmah YL. Three-dimensional Au-MnO 2 nanostructure as an agent of synergistic cancer therapy: chemo-/photodynamic and photothermal approaches. Dalton Trans 2024; 53:11368-11379. [PMID: 38896134 DOI: 10.1039/d4dt01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The design of multimodal cancer therapy was focused on reaching an efficient process and minimizing harmful effects on patients. In the present study, the Au-MnO2 nanostructures have been successfully constructed and produced as novel multipurpose photosensitive agents simultaneously for photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). The prepared AuNPs were conjugated with MnO2 NPs by its participation in the thermal decomposition process of KMnO4 confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy (FT-IR). The 16.5 nm Au-MnO2 nanostructure exhibited an absorbance at 438 nm, which is beneficial for application in light induction therapy due to the NIR band, as well as its properties of generating reactive oxygen species (ROS) associated with the 808 nm laser light for PDT. The photothermal transduction efficiency was calculated and compared with that of the non-irradiated nanostructure, in which it was found that the 808 nm laser induced a high efficiency of 83%, 41.5%, and 37.5% for PDT, PTT, and CDT, respectively. The results of DPBF and TMB assays showed that the efficiency of PDT and PTT was higher than that of CDT. The nanostructure also confirmed the time-dependent peroxidase properties at different H2O2, TMB, and H2TMB concentrations, promising good potency in applying nanomedicine in clinical cancer therapy.
Collapse
Affiliation(s)
- Siti Febtria Asrini Sugito
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Siti Qamariyah Khairunisa
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Airlangga University, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Musbahu Adam Ahmad
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Lee Hwei Voon
- Nanotechnology Catalysis and Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yatim Lailun Nikmah
- Department of Chemistry, Faculty of Natural Science, Sepuluh Nopember Institute of Technology, Keputih, Sukolilo, Surabaya 60111, Indonesia
| |
Collapse
|
3
|
Dutta J. Bio-thermal response during laser haemorrhoidoplasty: an exclusive analytical and numerical approach for theoretical investigation. Lasers Med Sci 2024; 39:108. [PMID: 38647731 DOI: 10.1007/s10103-024-04046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Haemorrhoidal disease is identified by declension of the inflamed and bleeding of vascular tissues of the anal canal. Traditionally, haemorrhoids are associated with chronic constipation and the most common symptoms are irritation in anus region, pain and discomfort, swelling around anus, tender lumps around the anus and rectal bleeding (depending upon the grade of haemorrhoid). Among the several conventional treatment procedures (commonly mentioned as, rubber band litigation, sclerotherapy and electrotherapy), laser haemorrhoidoplasty is an out-patient and less-invasive laparoscopic procedure. From literature survey it has been observed that an exclusive theoretical model depicting the impact of 1064 nm wavelength laser wave on living tissues subjected to haemorrhoid therapy is not available. This research work is a pioneering attempt to develop a theoretical study attributing specifically on laser therapy of haemorrhoid treatment based on Pennes' biological heat transfer model. The corresponding mathematical model has been solved by analytical method to establish thermal response of tissue during the treatment and also the same has been solved a numerical approach based on finite difference method to validate the feasibility of former method due to unavailability of any theoretical model. Impact of variation of blood perfusion term, laser pulse time and optical penetration depth on temperature response of skin tissue is captured. The tissue temperature decreases along with time of laser exposure with increasing the blood perfusion rate as it carries away large amount of heat. With the increase in laser pulse time, tissue temperature declines due to shorter pulse time resulting in higher energy consumed by electrons. The research outcome is successfully validated with less than 1% of error observed between the appointed analytical and numerical scheme.
Collapse
Affiliation(s)
- Jaideep Dutta
- Branch of Mechanical Science, Department of Basic Science and Humanities, St. Thomas' College of Engineering and Technology, 4, Diamond Harbour Road, Kidderpore, Kolkata, 700023, West Bengal, India.
| |
Collapse
|
4
|
Abbas I, SaifAlDien M, El-Bary AA, Egami RH, Elamin M. Theoretical estimation of the thermal damages of living tissues caused by laser irradiation in tumor thermal therapy. Heliyon 2024; 10:e29016. [PMID: 38617938 PMCID: PMC11015140 DOI: 10.1016/j.heliyon.2024.e29016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
This article aims to provide theoretical predictions for the thermal reactions of human tissues during tumor thermotherapy when exposed to laser irradiation and an external heat source. For the construction of a theoretical study of bioheat transfer, the selection of a suitable thermal model capable of accurately predicting the required thermal responses is essential. The effect of heat production by heat treatment on a spherical multilayer tumor tissue is evaluated using this approach. Analytical solution for the non-homogenous differential equations is derived in the Laplace domain. The study examines the impact of thermal relaxation time on tissue temperature and the subsequent thermal damage. The numerical findings of thermal damage and temperatures are depicted in a graphical representation. This model explains laser treatment, physical events, metabolic support, and blood perfusion. The numerical outcomes of the recommended model are validated by comparing them to the literatures.
Collapse
Affiliation(s)
- Ibrahim Abbas
- Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed SaifAlDien
- Department of Mathematics, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa A El-Bary
- Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt
| | - Ria H Egami
- Department of Mathematics, College of Science and Humanities in Sulail, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Mawahib Elamin
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
5
|
Prakash R, Yamamoto KK, Oca SR, Ross W, Codd PJ. Brain-Mimicking Phantom for Photoablation and Visualization. ... INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS. INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS 2023; 2023:10.1109/ismr57123.2023.10130243. [PMID: 37274088 PMCID: PMC10237535 DOI: 10.1109/ismr57123.2023.10130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While the use of tissue-mimicking (TM) phantoms has been ubiquitous in surgical robotics, the translation of technology from laboratory experiments to equivalent intraoperative tissue conditions has been a challenge. The increasing use of lasers for surgical tumor resection has introduced the need to develop a modular, low-cost, functionally relevant TM phantom to model the complex laser-tissue interaction. In this paper, a TM phantom with mechanically and thermally similar properties as human brain tissue suited for photoablation studies and subsequent visualization is developed. The proposed study demonstrates the tuned phantom response to laser ablation for fixed laser power, time, and angle. Additionally, the ablated crater profile is visualized using optical coherence tomography (OCT), enabling high-resolution surface profile generation.
Collapse
Affiliation(s)
- Ravi Prakash
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Kent K. Yamamoto
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Siobhan R. Oca
- Department of Mechanical Engineering and Materials Science, Duke University
| | - Weston Ross
- Department of Neurosurgery, Duke University School of Medicine
| | - Patrick J. Codd
- Department of Mechanical Engineering and Materials Science, Duke University
- Department of Neurosurgery, Duke University School of Medicine
| |
Collapse
|
6
|
Analytical and numerical analysis of the dual-pulse lag heat transfer in a three-dimensional tissue subjected to a moving multi-point laser beam. J Therm Biol 2023; 112:103431. [PMID: 36796889 DOI: 10.1016/j.jtherbio.2022.103431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
An extensive algorithm based on both analytical and numerical solution methodologies is proposed to obtain transient temperature distributions in a three-dimensional living tissue subjected to a moving single-point and multi-point laser beam by considering metabolic heat generation and blood perfusion rate. Here, the dual-phase lag/Pennes equation is analytically solved by using the method of Fourier series and the Laplace transform. The ability to model single-point or multi-point laser beams as an arbitrary function of place and time is a significant advantage of the proposed analytical approach, which can be used to solve similar heat transfer problems in other living tissues. Besides, the related heat conduction problem is numerically solved based on the finite element method. The effects of laser beam transitional speed, laser power, and the number of laser points on the temperature distribution within the skin tissue are investigated. Moreover, the temperature distribution predicted by the dual-phase lag model is compared with that of the Pennes model under different working conditions. For the studied cases, it is observed that the maximum tissue temperature decreased about 63% by an increase of 6mm/s in the speed of the laser beam. An increase in the laser power from 0.8W/cm3 to 1.2W/cm3 results in a 28 °C increase in the maximum temperature of the skin tissue. It is observed that the maximum temperature predicted by the dual-phase lag model is always lower than that of the Pennes model and the temperature variations over time are sharper, while their results are entirely consistent over the simulation time. The obtained numerical results indicated that the dual-phase lag model is preferred in heating processes occurring at short intervals. Among the investigated parameters, the laser beam speed has the most considerable effect on the difference between the results of the Pennes and the dual-phase lag models.
Collapse
|
7
|
A Computational Model for Nonlinear Biomechanics Problems of FGA Biological Soft Tissues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The principal objective of this work was to develop a semi-implicit hybrid boundary element method (HBEM) to describe the nonlinear fractional biomechanical interactions in functionally graded anisotropic (FGA) soft tissues. The local radial basis function collocation method (LRBFCM) and general boundary element method (GBEM) were used to solve the nonlinear fractional dual-phase-lag bioheat governing equation. The boundary element method (BEM) was then used to solve the poroelastic governing equation. To solve equations arising from boundary element discretization, an efficient partitioned semi-implicit coupling algorithm was implemented with the generalized modified shift-splitting (GMSS) preconditioners. The computational findings are presented graphically to display the influences of the graded parameter, fractional parameter, and anisotropic property on the bio-thermal stress. Different bioheat transfer models are presented to show the significant differences between the nonlinear bio-thermal stress distributions in functionally graded anisotropic biological tissues. Numerical findings verified the validity, accuracy, and efficiency of the proposed method.
Collapse
|
8
|
Kabiri A, Talaee MR. Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation. Proc Inst Mech Eng H 2022; 236:811-824. [DOI: 10.1177/09544119221089122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanical drilling process is a typical step in treating bone fractures to fix broken parts with screws and plates. Drilling generates a significant amount of heat and elevates the temperature of the bone, which can cause thermal osteonecrosis and damage to the surrounding bone tissue and nerves. Thermal inertia between heat flux and temperature gradient in nonhomogeneous interior structural medium-like biological tissues is arguable. Therefore, this paper proposes an analytical model of heat propagation in bone drilling for orthopedic surgery based on the hyperbolic Pennes bioheat transfer equation (HPBTE). Drilling experiments in bovine cortical bone samples were also carried out using an infrared thermography approach to confirm the proposed analytical model. Around the drilled hole surface, thermal necrosis is spread out from 1 to 10 mm. Increased feed rate reduces necrosis penetration distance and increases intense bone necrosis. The HPBTE includes thermal relaxation time effect and internal convective function of tissue perfusion rate. As these factors are not considered in the parabolic heat transfer equation (PHTE), the results show that the HPBTE is more accurate in predicting temperature and thermal osteonecrosis than the PHTE. As a result, proposed analytical model is a handy tool for calculating temperature to avoid thermal damage while improving process efficiency. Furthermore, it has the capability of controlling the manual or robotic drilling procedure for minimally invasive operations.
Collapse
Affiliation(s)
- Ali Kabiri
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Talaee
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Sun X, Jin X, Leng K, Zhao Y, Zhang H. 180-W GreenLight laser photoselective vaporization with multiple triamcinolone acetonide injections for the treatment of bladder neck contractures. Lasers Med Sci 2022; 37:3115-3121. [DOI: 10.1007/s10103-022-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
|
10
|
Hamzi H, Rajabpour A, Roldán É, Hassanali A. Learning the Hydrophobic, Hydrophilic, and Aromatic Character of Amino Acids from Thermal Relaxation and Interfacial Thermal Conductance. J Phys Chem B 2022; 126:670-678. [PMID: 35015542 DOI: 10.1021/acs.jpcb.1c07628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the thermal relaxation of the 20 naturally occurring amino acids in water and in the protein lysozyme is investigated using transient nonequilibrium molecular dynamics simulations. By modeling the thermal relaxation process, the relaxation times of the amino acids in water occurs over a time scale covering 2-5 ps. For the hydrophobic amino acids, the relaxation time is controlled by the size of the hydrocarbon side chain, while for hydrophilic amino acids, the number of hydrogen bonds does not significantly affect the time scales of the heat dissipation. Our results show that the interfacial thermal conductance at the amino acid-water interface is in the range of 40-80 MW m-2 K-1. Hydrophobic and aromatic amino acids tend to have a lower interfacial thermal conductance. Notably, we show that amino acids can be correlated with their thermal relaxation times and molar masses, into simply connected phases with the same hydrophilicity, hydrophobicity, and aromaticity. The thermal relaxation slows down by a factor of up to five in the protein relative to that in water. In the case of the hydrophobic amino acids in the protein lysozyme, the slow down in the thermal relaxation relative to that in water appears to be controlled primarily by the size of the side chain.
Collapse
Affiliation(s)
- Heydar Hamzi
- Advanced Simulation and Computing Laboratory (ASCL), Mechanical Engineering Department, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Ali Rajabpour
- Advanced Simulation and Computing Laboratory (ASCL), Mechanical Engineering Department, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Édgar Roldán
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ali Hassanali
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
11
|
Kabiri A, Talaee MR. Non-Fourier bioheat model for bone grinding with application to skull base neurosurgery. Proc Inst Mech Eng H 2021; 236:84-93. [PMID: 34423707 DOI: 10.1177/09544119211041417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone grinding is used to remove the skull bone and access tumors through the nasal passage during cranial base neurosurgery. The generated heat of the spherical diamond tool propagates and could damage the nerves or coagulate the arteries blood. Little is known about the non-Fourier behavior of heat propagation during bone grinding. Therefore, this study develops an analytical model of the hyperbolic Pennes bioheat transfer equation (HPBTE) to calculate the three-dimensional temperature and necrosis in the grinding region. In vitro experimental investigations were carried out, and the contact zone temperature was measured using an infrared thermography system to validate the proposed thermal model. The results demonstrate that the HPBTE provides more reliable temperature evaluation and thermal damage than Fourier or parabolic heat transfer equation (PHTE). Due to the low thermal diffusivity of the bone, the lower grinding feed rate leads to higher temperature amplitude and a smaller radius of the affected zone in the surface and depth of the bone. Also, the intensity of bone necrosis decreases with the increase of the feed rate, and the shape of the damage zone becomes stretched. This analytical model can assess the potential risk of the surgery before clinical trials. Also, it could be used for comparing the different operating conditions to minimize bone necrosis and improve the control process in neurosurgeries.
Collapse
Affiliation(s)
- Ali Kabiri
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Talaee
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
12
|
Kabiri A, Talaee MR. Analysis of hyperbolic Pennes bioheat equation in perfused homogeneous biological tissue subject to the instantaneous moving heat source. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04379-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractThe one-dimensional hyperbolic Pennes bioheat equation under instantaneous moving heat source is solved analytically based on the Eigenvalue method. Comparison with results of in vivo experiments performed earlier by other authors shows the excellent prediction of the presented closed-form solution. We present three examples for calculating the Arrhenius equation to predict the tissue thermal damage analysis with our solution, i.e., characteristics of skin, liver, and kidney are modeled by using their thermophysical properties. Furthermore, the effects of moving velocity and perfusion rate on temperature profiles and thermal tissue damage are investigated. Results illustrate that the perfusion rate plays the cooling role in the heating source moving path. Also, increasing the moving velocity leads to a decrease in absorbed heat and temperature profiles. The closed-form analytical solution could be applied to verify the numerical heating model and optimize surgery planning parameters.
Collapse
|