1
|
Chandrashekar BS, Lobo OC, Fusco I, Madeddu F, Zingoni T. Effectiveness of 675-nm Wavelength Laser Therapy in the Treatment of Androgenetic Alopecia Among Indian Patients: Clinical Experimental Study. JMIR DERMATOLOGY 2024; 7:e60858. [PMID: 39312769 PMCID: PMC11459112 DOI: 10.2196/60858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Androgenetic alopecia (AGA) is the most prevalent cause of hair loss around the world. OBJECTIVE The purpose of this study was to evaluate the efficacy of laser stimulation with a 675-nm wavelength for the treatment of AGA in male and female Indian patients. METHODS A total of 20 Indian healthy patients aged 23-57 years who presented a grade of alopecia stage I to stage V underwent one single pass with a 675-nm laser to the scalp area twice a week for a total of 8 sessions, followed by once a week for 4 sessions and once in 2 weeks for 2 sessions. There are 14 laser treatments in total. Macro- and dermatoscopic images have been acquired at T0 (baseline) and T1 (4 months). The vertex, frontal, and parietal areas of the scalp were evaluated. Many parameters were analyzed including hair count and hair density of terminal; mean thickness; vellus follicles; total follicular units; units with 1 hair, 2 hairs, 3 hairs, 4 hairs, and >4 hairs; unit density; and average hair/unit. RESULTS The macroimages and dermatoscopic evaluations showed good improvement over the entire treated area, with a clear increase in the number of hairs and hair thickness. General parameters such as hair count and hair density showed a percentage increase of around 17%. The hair mean thickness parameters showed a significant (P<.001) percentage increase of 13.91%. Similar results were obtained for terminal and vellus hair: terminal hair count and hair density significantly (P=.04 and P=.01, respectively) increased by 17.45%, vellus hair count increased by 16.67% (P=.06), and the density of vellus hair increased by 16.61% (P=.06). CONCLUSIONS The study findings demonstrate that the 675-nm laser system improved AGA in Indian patients, facilitating the anagen phase and improving hair density and other positive hair parameters.
Collapse
|
2
|
Lama SBC, Pérez-González LA, Kosoglu MA, Dennis R, Ortega-Quijano D. Physical Treatments and Therapies for Androgenetic Alopecia. J Clin Med 2024; 13:4534. [PMID: 39124800 PMCID: PMC11313483 DOI: 10.3390/jcm13154534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Androgenetic alopecia, the most common cause of hair loss affecting both men and women, is typically treated using pharmaceutical options, such as minoxidil and finasteride. While these medications work for many individuals, they are not suitable options for all. To date, the only non-pharmaceutical option that the United States Food and Drug Administration has cleared as a treatment for androgenetic alopecia is low-level laser therapy (LLLT). Numerous clinical trials utilizing LLLT devices of various types are available. However, a myriad of other physical treatments for this form of hair loss have been reported in the literature. This review evaluated the effectiveness of microneedling, pulsed electromagnetic field (PEMF) therapy, low-level laser therapy (LLLT), fractional laser therapy, and nonablative laser therapy for the treatment of androgenetic alopecia (AGA). It also explores the potential of multimodal treatments combining these physical therapies. The majority of evidence in the literature supports LLLT as a physical therapy for androgenetic alopecia. However, other physical treatments, such as nonablative laser treatments, and multimodal approaches, such as PEMF-LLLT, seem to have the potential to be equally or more promising and merit further exploration.
Collapse
Affiliation(s)
| | | | | | - Robert Dennis
- Biomedical Engineering Departments, UNC Chapel Hill and NC State University, Raleigh, NC 27695, USA;
| | - Daniel Ortega-Quijano
- Dermatology Department, University Hospital Ramón y Cajal, 28034 Madrid, Spain; (L.A.P.-G.); (D.O.-Q.)
- Hair Disorders Unit, Grupo Pedro Jaén, 28006 Madrid, Spain
| |
Collapse
|
3
|
Huang X, Zhao P, Zhang G, Su X, Li H, Gong H, Ma X, Liu F. Application of Non-Pharmacologic Therapy in Hair Loss Treatment and Hair Regrowth. Clin Cosmet Investig Dermatol 2024; 17:1701-1710. [PMID: 39071847 PMCID: PMC11283242 DOI: 10.2147/ccid.s471754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Purpose Alopecia significantly affects the appearance and psychology of patients, and pharmacological therapies and hair transplantation are the main treatments for alopecia, but both have limitations. This review aimed to summarize the non-pharmacological therapies that promote hair growth and regeneration. Patients and Methods This is a non-systematic review. Multiple databases was searched with relevant data published between 1997 and 2024. Searching and screening followed the PRISMA guidelines. Results Novel therapeutic modalities, such as gas molecules, platelet-rich plasma, laser, and microneedling, can change the microenvironment of hair follicles, activate hair follicle stem cells, and promote hair growth and regeneration. Conclusion This paper reviews research on the application of non-pharmacological therapies in alopecia treatment and hair regeneration, with a view to providing an important basis for future research on alopecia treatment and the postoperative treatment of patients after hair transplantation.
Collapse
Affiliation(s)
- Xinlyu Huang
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, People’s Republic of China
| | - Gongjie Zhang
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiangxi Su
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hanlin Li
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huizi Gong
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, People’s Republic of China
| | - Fang Liu
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Li A, Wei X, Xie Y, Ren Y, Zhu X, Liu M, Liu S. Light exposure and its applications in human health. JOURNAL OF BIOPHOTONICS 2024; 17:e202400023. [PMID: 38576140 DOI: 10.1002/jbio.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.
Collapse
Affiliation(s)
- Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yajia Xie
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xi Zhu
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhang F, Li Q, Qin W, Ren W, Zhu P, Jin Q, Li M. A study of the biological effects of low-level light. Lasers Med Sci 2024; 39:74. [PMID: 38383895 DOI: 10.1007/s10103-024-04018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Low-level light therapy (LLLT), also known as photo biomodulation (PBM), is a type of optical therapy that uses red or near-infrared lasers or light-emitting diodes (LEDs) for medical treatment. The laser wavelengths involved in PBM typically range between 600-700 nm and 780-1100 nm, with power densities ranging between 5 mW/cm2 and 5 W/cm2. PBM is a series of biochemical cascades exhibited by biological tissues after absorbing a certain amount of energy from light. PBM has been widely used in clinical practice in the past 20 years, and numerous clinical trials have demonstrated its biological efficacy. However, the underlying mechanisms have not yet been fully explored. In this paper, we have summarized the research into PBM over the past two decades, to identify the important mechanisms of the biological effects of PBM from the perspective of molecular mechanisms, cellular levels, and tissue changes. We hope our study provide a theoretical basis for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Fan Zhang
- Hair Medical Research Center, Department of Dermatology and Venereology, Beijing Jishuitan Hospital, Capital Medical University, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China.
| | - Qiaoyu Li
- School of Clinical Medicine, Peking University School of Medicine, Beijing, 100191, China
| | - Wenxin Qin
- School of Clinical Medicine, Peking University School of Medicine, Beijing, 100191, China
| | - Wei Ren
- School of Clinical Medicine, Peking University School of Medicine, Beijing, 100191, China
| | - Peiqiu Zhu
- Hair Medical Research Center, Department of Dermatology and Venereology, Beijing Jishuitan Hospital, Capital Medical University, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Qiuzi Jin
- Hair Medical Research Center, Department of Dermatology and Venereology, Beijing Jishuitan Hospital, Capital Medical University, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| | - Man Li
- Hair Medical Research Center, Department of Dermatology and Venereology, Beijing Jishuitan Hospital, Capital Medical University, No. 31 of Xinjiekou East Street, Xicheng District, Beijing, 100035, China
| |
Collapse
|
6
|
Xiang H, Xu S, Zhang W, Xue X, Li Y, Lv Y, Chen J, Miao X. Dissolving microneedles for alopecia treatment. Colloids Surf B Biointerfaces 2023; 229:113475. [PMID: 37536169 DOI: 10.1016/j.colsurfb.2023.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Alopecia is a treatable benign disease, however, approximately 15-30% of women and 50% of men suffer from alopecia, which greatly affects patient's self-esteem and quality of life. Currently, commercial products for alopecia treatment include topical minoxidil solution, oral finasteride tablets and oral baricitinib tablets. However, the barrier of stratum corneum, systemic adverse effects and poor cure rate limit the application of commercial products. Therefore, researchers investigated the mechanism of alopecia, and developed new drugs that could target lactate dehydrogenase-related pathways, remove excessive reactive oxygen in hair follicles, and reduce the escape of hair follicle stem cells, thus injecting new strength into the treatment of alopecia. Moreover, starting from improving drug stratum corneum penetration and reducing side effects, researchers have developed hair loss treatment strategies based on dissolved microneedles (MNs), such as drug powders/microparticles, nanoparticles, biomimetic cell membranes, phototherapy and magnetically responsive soluble microneedles, which show exciting alopecia treatment effects. However, there are still some challenges in the practical application of the current alopecia treatment strategy with soluble microneedles, and further studies are needed to accelerate its clinical translation.
Collapse
Affiliation(s)
- Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Sai Xu
- Marine College, Shandong University, Weihai 264209, China
| | - Weiwei Zhang
- Drug Research and Development Center, Shandong Drug and Food Vocational College, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Yanyu Lv
- Drug Research and Development Center, Shandong Drug and Food Vocational College, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
7
|
da Silva TG, Ribeiro RS, Mencalha AL, de Souza Fonseca A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med Sci 2023; 38:136. [PMID: 37310556 DOI: 10.1007/s10103-023-03801-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Since the reporting of Endre Mester's results, researchers have investigated the biological effects induced by non-ionizing radiation emitted from low-power lasers. Recently, owing to the use of light-emitting diodes (LEDs), the term photobiomodulation (PBM) has been used. However, the molecular, cellular, and systemic effects involved in PBM are still under investigation, and a better understanding of these effects could improve clinical safety and efficacy. Our aim was to review the molecular, cellular, and systemic effects involved in PBM to elucidate the levels of biological complexity. PBM occurs as a consequence of photon-photoacceptor interactions, which lead to the production of trigger molecules capable of inducing signaling, effector molecules, and transcription factors, which feature it at the molecular level. These molecules and factors are responsible for cellular effects, such as cell proliferation, migration, differentiation, and apoptosis, which feature PBM at the cellular level. Finally, molecular and cellular effects are responsible for systemic effects, such as modulation of the inflammatory process, promotion of tissue repair and wound healing, reduction of edema and pain, and improvement of muscle performance, which features PBM at the systemic level.
Collapse
Affiliation(s)
- Thayssa Gomes da Silva
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil.
| | - Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
8
|
Hu B, Zhao X, Lu Y, Zhu Y, He H. A transient photoactivation of epidermal stem cells by femtosecond laser promotes skin wound healing. JOURNAL OF BIOPHOTONICS 2022; 15:e202200217. [PMID: 36054075 DOI: 10.1002/jbio.202200217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Wound healing is a long-term complex process, in which epidermal stem cells (EPSCs) in epidermis of skin have been found to play an essential role in it. We develop a noninvasive method to activate EPSCs in skin in vivo to promote wound healing, based on a microscopic system to enable a sequential frame-by-frame scanning of a femtosecond laser at 800 nm to the predefined skin region for a single time for 16 seconds. The laser is tightly focused on a submicron spot and localized in the epidermis, and scans point by point to activate EPSCs there. The density and stemness of EPSCs are significantly enhanced for at least 60 hours after the single-time transient photoactivation. We demonstrate this method works in a skin wound mouse model. Our results provide an optical method for in vivo EPSC activation and hold good potential in wound healing.
Collapse
Affiliation(s)
- Bijin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Zhu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Wei H, Yi T, Li Q, Guo Y, Shen C, Jin P. Application of lncRNA-miRNA-mRNA ceRNA network analysis in the treatment of androgenic alopecia. J Clin Lab Anal 2022; 37:e24791. [PMID: 36458379 PMCID: PMC9833970 DOI: 10.1002/jcla.24791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can be used as competitive endogenous RNAs (ceRNAs) to bind to microRNAs (miRNAs) to regulate gene expression. Previous studies have demonstrated that ceRNAs play an important role in the development of tumors. However, it is not clear whether the lncRNA-miRNA-mRNA ceRNA network plays a role in androgenic alopecia (AGA). METHODS The hair follicles of three AGA patients and three healthy individuals were collected for high-throughput whole transcriptome sequencing to screen for differentially expressed lncRNAs. Differentially expressed lncRNA target genes were subjected to databases to predict miRNA-mRNA and lncRNA-miRNA relationship pairs, and a ceRNA network was constructed using Cytoscape software. Relative expression was verified by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS 84 lncRNAs were significantly differentially expressed between the hair follicles of AGA patients and those of healthy individuals; 30 were upregulated, and 54 were downregulated. The top 10 upregulated lncRNAs were ENST00000501520, ENST00000448179, ENST00000318291, ENST00000568280, ENST00000561121, ENST00000376609, ENST00000602414, ENST00000573866, ENST00000513358, and ENST00000564194. The top 10 downregulated lncRNAs were ENST00000566804, ENST00000561973, ENST00000587680, ENST00000569927, ENST00000340444, ENST00000424345, ENST00000589787, NR_024344, NR_073026, and NR_110001. The qRT-PCR validation results and receiver-operating characteristic curve analysis indicated that one upregulated lncRNA, LOXL1-AS1 (ENST00000564194), had the most significant clinical diagnostic potential. After further analysis, it was concluded that LOXL1-AS1 could be used as a sponge to target hsa-miR-5193, thereby regulating TP53 expression. CONCLUSION The ceRNA network-regulating AGA was constructed through high-throughput sequencing. Our study also identified a key lncRNA that is possibly related to the AGA pathological process.
Collapse
Affiliation(s)
- Hanxiao Wei
- Department of Plastic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Tian Yi
- Xuzhou Medical UniversityXuzhouChina
| | - Qiang Li
- Department of Plastic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yanping Guo
- Department of Plastic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Caiqi Shen
- Department of Plastic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Peisheng Jin
- Department of Plastic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
10
|
Kittigul L, Meephansan J, Sirithanabadeekul P, Hanvivattanakul S, Deenonpoe R, Yingmema W, Tantisantisom K, Thongma S, Rayanasukha Y, Boonkoom T, Adulyaritthikul P, Khanchaitit P. The efficacy of LED microneedle patch on hair growth in mice. Arch Dermatol Res 2022; 315:971-982. [PMID: 36416978 DOI: 10.1007/s00403-022-02476-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Light penetration depth in the scalp is a key limitation of low-level light therapy for the treatment of androgenetic alopecia (AGA). A novel light emitting diode (LED) microneedle patch was designed to achieve greater efficacy by enhancing the percutaneous light delivery. The study aimed to investigate the efficacy and safety of this device on hair growth in mice. Thirty-five male C57BL/6 mice which their dorsal skin was split into upper and lower parts to receive either LED irradiation alone or LED irradiation with a microneedle patch. Red (629 nm), green (513 nm), and blue light (465 nm) at an energy dose of 0.2 J/cm2 were applied once daily for 28 days. Outcomes were evaluated weekly using digital photographs. Histopathological findings were assessed using a 6 mm punch biopsy. A significant increase in hair growth was observed in the green light, moderate in the red light, and the lowest in the blue light group. The addition of the microneedle patch to LED irradiation enhanced greater and faster anagen entry in all the groups. Histopathology showed an apparent increase in the number of hair follicles, collagen bundles in the dermis, angiogenesis, and mononuclear cell infiltration after treatment with the green-light LED microneedle patches. No serious adverse effects were observed during the experiment. Our study provides evidence that the newly developed green-light LED microneedle patch caused the optimal telogen-to-anagen transition and could lead to new approaches for AGA. Microneedle stimulation may aid percutaneous light delivery to the target hair follicle stem cells.
Collapse
Affiliation(s)
- Leelawat Kittigul
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, 12120, Pathum Thani, Thailand
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, 12120, Pathum Thani, Thailand.
| | - Punyaphat Sirithanabadeekul
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, 12120, Pathum Thani, Thailand
| | - Sirashat Hanvivattanakul
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, 12120, Pathum Thani, Thailand
| | - Raksawan Deenonpoe
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Werayut Yingmema
- Laboratory Animal Centers, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Kittipong Tantisantisom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - Sattra Thongma
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - Yossawat Rayanasukha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - Thitikorn Boonkoom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - Punyanuch Adulyaritthikul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | - Paisan Khanchaitit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
11
|
Su Y, Wu X. Ablative 2940nm Er: YAG fractional laser for male androgenetic alopecia. Dermatol Ther 2022; 35:e15801. [PMID: 36043547 DOI: 10.1111/dth.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Yiping Su
- Department of Dermatology, First People's Hospital of Lin 'an District, Hangzhou City, Zhejiang Province, China.,Department of Dermatology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xianjie Wu
- Department of Dermatology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Chen Y, Liu L, Fan J, Zhang T, Zeng Y, Su Z. Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice. Lasers Med Sci 2022; 37:1699-1707. [PMID: 34546465 DOI: 10.1007/s10103-021-03419-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
The aim of the study was to explore the effect and mechanism of a low-level laser on hair follicle stem cells in full-thickness skin wound healing in mice. Full-thickness skin defects were generated by a 5-mm punch biopsy tool on the backs of depilated C57/BL6N mice, which were randomly divided thereafter into a low-dose laser treatment group (LLLT-Low), a high-dose laser treatment group (LLLT-High), and a control group (control). From the day of modeling to the day before the skin samples were taken, the wound area and wound edge of the mice in the LLLT-Low and LLLT-High groups were irradiated with a laser comb every 24 h, and the energy density was 1 J/cm2 and 10 J/cm2, respectively. The control group was irradiated with an ordinary fluorescent lamp. At 0, 3, 5, 10, and 14 days after modeling, pictures of each wound were taken, and the percent wound closure was analyzed. At 3, 5, 10, and 14 days after modeling, the samples were observed by hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Whole transcriptome sequencing (RNA-Seq) was performed on the samples on day 10. Gene Ontology (GO) analysis was performed, and the results were validated by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). The analysis of the percent of wound closure showed that healing was accelerated (significantly from 5 to 10 days) in the LLLT-Low group, but there was no clear change in the LLLT-High group. HE staining showed that the LLLT-Low group had an increasing number of hair follicles and a tendency to migrate to the center of the wound. There was no significant increase in the number of hair follicles and no obvious migration in the LLLT-High group. Immunofluorescence staining showed that the total number of CK15 + hair follicle stem cells in the LLLT-Low group was higher than that in the control group and LLLT-High group at all time points. The number and farthest migration distance of CK15 + hair follicle stem cells increased significantly with time, and after 5 days, they were significantly higher than those in the control group and LLLT-High group. RNA-Seq and Western blot analysis showed that the expression of related genes in hair follicle stem cells, including CK15, in the LLLT-Low group was upregulated. GO analysis and ELISA showed that the expression of many cytokines, represented by IL34, in the LLLT-Low group was upregulated. Low-level laser treatment can promote the proliferation, differentiation, and migration of CK15 + hair follicle stem cells by upregulating the cytokine IL34, thereby promoting skin wound healing in mice.
Collapse
Affiliation(s)
- Yihua Chen
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Liqiang Liu
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China.
| | - Jincai Fan
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Tiran Zhang
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Yan Zeng
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zhiguo Su
- Ninth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| |
Collapse
|
13
|
Chen D, Yang X, Liu X, He Y, Fan W, Wang H, Lin Y. Efficacy comparison of monotherapies and combination therapies for androgenetic alopecia: A Bayesian network meta-analysis. Dermatol Ther 2021; 35:e15262. [PMID: 34897933 DOI: 10.1111/dth.15262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Even though a variety of treatments for androgenetic alopecia (AGA) currently have been using in clinical, satisfactory therapeutic methods are still lacking. We aimed to compare and rank these treatments for AGA according to their differences in efficacy via Bayesian network meta-analysis, suggesting the optimal therapy for clinical utility to refer. A systematic search of PubMed, Embase, Web of Science, and Cochrane Library database was performed and we included eligible randomized controlled trials. We compared differences in treatment effects of monotherapies and combination therapies using the Bayesian network model. The average difference in alteration from baseline of hair density and hair diameter, and variation value (mean ± SD) between the pre- and post-intervention was selected for main outcome measure and secondary outcome measure. Total 49 RCTs involving 3133 patients and six interventions were included. Regardless of based on hair density or hair diameter, topical/systemic combined with adjunctive therapeutics had the best treatment efficacy among all interventions (MD: 40.11; 95% CrI 25.65-54.59), followed by topical combined with systemic medical therapeutics (MD: 36.41; 95% CrI 17.54-55.24). In addition, in terms of hair density, treatment efficacy had significant difference sequentially among topical medical therapeutics (MD: 22.15; 95% CrI 12.88-31.42), systemic medical therapeutics (MD: 19.91; 95% CrI 6.504-33.22), and adjunctive therapeutics (MD: 18.60; 95% CrI 8.020-29.10) compared to placebo. In recent years, combination therapies are showing significant promise as potential therapies. Taken together with the outcomes of this study, despite the specific mechanism of the effect of combination therapies was not clear and further studies are needed, it may be the best treatment for AGA.
Collapse
Affiliation(s)
- Dongyu Chen
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China.,Liaobu Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaoyu Yang
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China.,Liaobu Hospital, Guangdong Medical University, Dongguan, China
| | - Xinghua Liu
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China
| | - Yuqing He
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China.,Liaobu Hospital, Guangdong Medical University, Dongguan, China
| | - Wenlong Fan
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China.,Liaobu Hospital, Guangdong Medical University, Dongguan, China
| | - Hongxin Wang
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China.,Liaobu Hospital, Guangdong Medical University, Dongguan, China
| | - Yonghuang Lin
- Department of Epidemiology and Medical Statistics, Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, China
| |
Collapse
|