1
|
Liu S, Deng S, Li X, Cheng D. Size- and Surface- Dual Engineered Small Polyplexes for Efficiently Targeting Delivery of siRNA. Molecules 2021; 26:3238. [PMID: 34072265 PMCID: PMC8199253 DOI: 10.3390/molecules26113238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
Though siRNA-based therapy has achieved great progress, efficient siRNA delivery remains a challenge. Here, we synthesized a copolymer PAsp(-N=C-PEG)-PCys-PAsp(DETA) consisting of a poly(aspartate) block grafted with comb-like PEG side chains via a pH-sensitive imine bond (PAsp(-N=C-PEG) block), a poly(l-cysteine) block with a thiol group (PCys block), and a cationic poly(aspartate) block grafted with diethylenetriamine (PAsp(DETA) block). The cationic polymers efficiently complexed siRNA into polyplexes, showing a sandwich-like structure with a PAsp(-N=C-PEG) out-layer, a crosslinked PCys interlayer, and a complexing core of siRNA and PAsp(DETA). Low pH-triggered breakage of pH-sensitive imine bonds caused PEG shedding. The disulfide bond-crosslinking and pH-triggered PEG shedding synergistically decreased the polyplexes' size from 75 nm to 26 nm. To neutralize excessive positive charges and introduce the targeting ligand, the polyplexes without a PEG layer were coated with an anionic copolymer modified with the targeting ligand lauric acid. The resulting polyplexes exhibited high transfection efficiency and lysosomal escape capacity. This study provides a promising strategy to engineer the size and surface of polyplexes, allowing long blood circulation and targeted delivery of siRNA.
Collapse
Affiliation(s)
- Shuang Liu
- PCFM Lab of Ministry of Education & Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (X.L.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaohui Deng
- PCFM Lab of Ministry of Education & Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (X.L.)
| | - Xiaoxia Li
- PCFM Lab of Ministry of Education & Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (X.L.)
| | - Du Cheng
- PCFM Lab of Ministry of Education & Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (X.L.)
| |
Collapse
|
2
|
A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Chen L, Wu Y, Wu H, Li J, Xie J, Zang F, Ma M, Gu N, Zhang Y. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Acta Biomater 2019; 96:491-504. [PMID: 31302299 DOI: 10.1016/j.actbio.2019.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
The combination of multi-targeting magnetic nanoprobes and multi-targeting strategies has potential to facilitate magnetic resonance imaging (MRI) and magnetic induction hyperthermia of the tumor. Although the thermo-agents based on magnetic iron oxide nanoparticles (MION) have been successfully used in the form of intratumoral injection in clinical cure of glioblastoma, the tumor-targeted thermotherapy by intravenous administration remains challenging. Herein, we constructed a c(RGDyK)- and d-glucosamine-grafted bispecific molecular nanoprobe (Fe3O4@RGD@GLU) with a magnetic iron oxide core of size 22.17 nm and a biocompatible shell of DSPE-PEG2000, which can specially target the tumor vessel and cancer cells. The selection of c(RGDyK) could make the nanoprobe enter the neovascularization endotheliocyte through αvβ3-mediated endocytosis, which drastically reduced the dependence on the enhanced permeability and retention (EPR) effect in tumor. This dual-ligand nanoprobe exhibited strong magnetic properties and favorable biocompatibility. In vitro studies confirmed the anti-phagocytosis ability against macrophages and the specific targeting capability of Fe3O4@RGD@GLU. Then, the imaging effect and anti-tumor efficacy were compared using different targeting strategies with untargeted nanoprobes, dual-targeted nanoprobes, and magnetic targeting combined with dual-targeted nanoprobes. Moreover, the combination strategy of magnetic targeting and active targeting promoted the penetration depth of nanoprobes in addition to the increased accumulation in tumor tissue. Thus, the dual-targeted magnetic nanoprobe together with the combined targeting strategy could be a promising method in tumor imaging and hyperthermia through in vivo delivery of theranostic agents. STATEMENT OF SIGNIFICANCE: Magnetic induction hyperthermia based on iron oxide nanoparticles has been used in clinic for adjuvant treatment of recurrent glioblastoma. Nonetheless, this application is limited to intratumoral injection, and tumor-targeted hyperthermia by intravenous injection remains challenging. In this study, we developed a multi-targeted strategy by combining magnetic targeting with active targeting of dual-ligand magnetic nanoprobes. This combination mode acquired optimum contrast imaging effect through MRI and tumor-suppressive effect through hyperthermia under an alternating current magnetic field. The design of the nanoprobe was suitable for targeting most tumor lesions, which enabled it to be an effective theranostic agent with extensive uses. This study showed significant enhancement of the penetration depth and accumulation of nanoprobes in the tumor tissue for efficient imaging and hyperthermia.
Collapse
|
4
|
Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthc Mater 2018; 7:e1800477. [PMID: 29969201 DOI: 10.1002/adhm.201800477] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/06/2018] [Indexed: 12/13/2022]
Abstract
The rapid development of healthcare techniques encourages the emergence of new molecular imaging agents and modalities. Fluorescence imaging that enables precise monitoring and detection of biological processes/diseases is extensively investigated as this imaging technique has strengths in terms of high sensitivity, excellent temporal resolution, low cost, and good safety. Aggregation-induced emission luminogens (AIEgens) have recently emerged as a new class of emitters that possess several notable features, such as high brightness, large Stokes shift, marked photostability, good biocompatibility, and so on. So far, AIEgens are widely explored and exhibit superb performance in the area of biomedicine and life sciences. Herein, this review summarizes and discusses the recent investigations of AIEgens for in vivo diagnosis and therapy including long-term tracking, 3D angiography, multimodality imaging, disease theranostics, and activatable sensing. Collectively, these results reveal that AIEgens are of great promise for in vivo biomedical applications. It is hoped that this review will lead to new insights into the development of advanced healthcare materials.
Collapse
Affiliation(s)
- Ji Qi
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- NSFC Center for Luminescence from Molecular Aggregates; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
5
|
Núñez C, Estévez SV, del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018; 23:331-345. [DOI: 10.1007/s00775-018-1542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
6
|
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:287-307. [PMID: 26707817 DOI: 10.1016/j.nano.2015.10.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Nanomedicine, the integration of nanotechnological tools in medicine demonstrated promising potential to revolutionize the diagnosis and treatment of various human health conditions. Nanoparticles (NPs) have shown much promise in diagnostics of cancer, especially since they can accommodate targeting molecules on their surface, which search for specific tumor cell receptors upon injection into the blood stream. This concentrates the NPs in the desired tumor location. Furthermore, such receptor-specific targeting may be exploited for detection of potential metastases in an early stage. Some NPs, such as superparamagnetic iron oxide NPs (SPIONs), are also compatible with magnetic resonance imaging (MRI), which makes their clinical translation and application rather easy and accessible for tumor imaging purposes. Furthermore, multifunctional and/or theranostic NPs can be used for simultaneous imaging of cancer and drug delivery. In this review article, we will specifically focus on the application of SPIONs in early detection and imaging of major cancer types. FROM THE CLINICAL EDITOR Super-paramagnetic iron oxide nanoparticles (SPIONs) have been reported by many to be useful as an MRI contrast agent in the detection of tumors. To further enhance the tumor imaging, SPIONs can be coupled with tumor targeting motifs. In this article, the authors performed a comprehensive review on the current status of using targeted SPIONS in tumor detection and also the potential hurdles to overcome.
Collapse
Affiliation(s)
- Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad J Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Raoufi
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany; Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ophir Vermesh
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, CA, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Hu C, Xia T, Gong Y, Wang X, Liu RQ, Zhang QY, Yi CF, Xu ZS, Guo DZ. Emulsifier-free emulsion polymerized poly(MMA-HEMA-Eu(AA)3Phen)/Fe3O4 magnetic fluorescent bifunctional nanospheres for magnetic resonance and optical imaging. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-016-1739-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|
9
|
Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. NANOSCALE 2015; 7:11486-508. [PMID: 26010238 DOI: 10.1039/c5nr01444a] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of polymeric luminescent nanomaterials for biomedical applications has recently attracted a large amount of attention due to the remarkable advantages of these materials compared with small organic dyes and fluorescent inorganic nanomaterials. Among these polymeric luminescent nanomaterials, polymeric luminescent nanomaterials based on dyes with aggregation-induced emission (AIE) properties should be of great research interest due to their unique AIE properties, the designability of polymers and their multifunctional potential. In this review, the recent advances in the design and biomedical applications of polymeric luminescent nanomaterials based on AIE dyes is summarized. Various design strategies for incorporation of these AIE dyes into polymeric systems are included. The potential biomedical applications such as biological imaging, and use in biological sensors and theranostic systems of these polymeric AIE-based nanomaterials have also been highlighted. We trust this review will attract significant interest from scientists from different research fields in chemistry, materials, biology and interdisciplinary areas.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Dextran gadolinium complex containing folate groups as a potential magnetic resonance imaging contrast agent. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1681-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|