1
|
Ren K, Zhang B, Guo J, Cao H, Cheng J, Guo J, Li D. Aggregation-induced emission(AIE)for next-generation biosensing and imaging: A review. Biosens Bioelectron 2025; 271:117067. [PMID: 39718275 DOI: 10.1016/j.bios.2024.117067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Luminescence technology is a powerful analytical tool for biomedical research as well as for marker detection. Luminescent materials with aggregation-induced emission (AIE) properties have attracted extensive research interest, and their unique luminescence characteristics, biocompatibility, and sensitivity make them useful for the development of fluorescence-turn-on biosensors with superior sensitivity. While numerous reviews have focused on the design of AIEgens, comprehensive summaries on the strategies for biosensor preparation and application fields remain limited. In this review, we provide a concise introduction to the discovery and mechanism of the AIE phenomenon and summarize the working principles of classic AIE molecules. We discuss luminescence tuning strategies and functionalization methods for AIEgens, along with the design and preparation of AIE-based biosensors. Typical applications of AIE in biosensing and imaging are outlined, and we analyze the current limitations and future research directions of AIE technology in these fields. We hope this review will serve as a valuable reference for researchers in this rapidly developing field. The insights provided may facilitate the rational design of next-generation biosensors based on AIE technology, exhibiting promising avenues of biomedical applications and vast potential for growth.
Collapse
Affiliation(s)
- Keyi Ren
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bangjie Zhang
- School of Mechanical Science and Engineering, Huazhong University of Science & Technolgy, Wuhan, 430074, China
| | - Jiuchuan Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hanyu Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, 401329, China.
| | - Diangeng Li
- Department of Academic Research, Beijing Ditan Hospital, Capital Medical University, National Center for Infectious Diseases, 8th Jingshun East Road, Beijing, 100015, China.
| |
Collapse
|
2
|
Wang P, Lv Y, Hou X, Yang X, Tao Q, Li G. Chitosan based fluorescent probe with AIE property for detection of Fe 3+ and bacteria. Int J Biol Macromol 2024; 279:135478. [PMID: 39250988 DOI: 10.1016/j.ijbiomac.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 μM) and wide detection range (10-300 μM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoluan Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
3
|
Yu C, Huang J, Yang M, Zhang J. Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu 2. SENSORS (BASEL, SWITZERLAND) 2024; 24:3425. [PMID: 38894218 PMCID: PMC11174907 DOI: 10.3390/s24113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A chitosan-based Cu2+ fluorescent probe was designed and synthesized independently using the C-2-amino group of chitosan with 1, 8-naphthalimide derivatives. A series of experiments were conducted to characterize the optical properties of the grafted probe. The fluorescence quenching effect was investigated based on the interactions between the probe and common metals. It was found that the proposed probe displayed selective interaction with Cu2+ over other metal ions and anions, reaching equilibrium within 5 min.
Collapse
Affiliation(s)
| | | | | | - Jun Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (C.Y.); (J.H.); (M.Y.)
| |
Collapse
|
4
|
Fan E, Guo H, Hao T, Zhao R, Zhang P, Feng Y, Liu Y, Deng K. Morpholine-modified polyacrylamides with Polymerization-Induced emission and its specific detection to Cu 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123782. [PMID: 38215564 DOI: 10.1016/j.saa.2023.123782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
In this work, three morpholine-modified polyacrylamide derivatives (MMPAm) were successfully prepared by free radical polymerization of monomers with morpholine moiety. The intramolecular aggregation of morpholine rings on macromolecular backbone gives MMPAm a significant polymerization-induced emission (PIE). Particularly, poly(N-morpholine acrylamide) (PNMPA) has the characteristics of strong fluorescence at 450 nm, and its fluorescence quantum yield reaches 2.87 %. The introduction of morpholine moiety, the length of CH2 spacer between morpholine ring and the backbone and the molecular weight play the important roles in PIE properties of PNMPA. Interestingly, PNMPA can recognize and detect Cu2+ specifically even in the presence of 12 other metal ions by thorough fluorescence quenching, and the detection limit of PNMPA is 17.3 μM. Furthermore, the dynamic quenching of PNMPA by Cu2+ ions and the complexation ratio of 1:2 according to JOB's working diagram were confirmed by fluorescence titration. Under the assistance of EDTA, a reversible detection system for Cu2+ is achieved, and a portable test paper from PNMPA for the detection of Cu2+ was also made. In conclusion, PNMPA is endowed with a significant PIE effect by the intramolecular aggregation of morpholine rings along the backbone in the polymerization of non-fluorescent monomer, and is expected to be a promising material for specific detection to Cu2+ ions.
Collapse
Affiliation(s)
- Enze Fan
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Huiying Guo
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Tingting Hao
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Ronghui Zhao
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Department of Clinical Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yayu Feng
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yunfei Liu
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Mabrouk M, Hammad SF, Mansour FR, Abdella AA. A Critical Review of Analytical Applications of Chitosan as a Sustainable Chemical with Functions Galore. Crit Rev Anal Chem 2022; 54:840-856. [PMID: 35903052 DOI: 10.1080/10408347.2022.2099220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomass and biowastes stand as sustainable and cost-effective environmentally benign alternative feedstock. Chitosan is a biocompatible, bioactive, and biodegradable biopolymer derived from chitin to achieve eight aspects out of the 12 green chemistry principles. Chitosan got significant attention in several fields including chemical analysis, in addition to chemical functionally, which enabled its use as adsorbent and its structural crosslinking using various crosslinkers. The physicochemical, technological, and optical properties of chitosan have been extensively exploited in analysis. Mainly, deacetylation degree and molecular weight are controlling its properties and hence controlling its functions. This review presents a structure, properties, and functions relationships of chitosan. It also aims to provide an overview of the different functions that chitosan can serve in each analytical technique such as supporting matrix, catalyst…etc. The contribution of chitosan in improving the ecological performance is discussed in each technique.
Collapse
Affiliation(s)
- Mokhtar Mabrouk
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Incorporation of Rhodamine into a Host Polymer via In-Situ Generated Isocyanato Group and Application for the Detection of Cu2+ Ion. CRYSTALS 2022. [DOI: 10.3390/cryst12060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rhodamine-based fluorescent polymer P(MMA-co-RB) has been synthesized via an intermediate NCO-containing polymer generated by the Lossen rearrangement reaction. The fluorescent property of P(MMA-co-RB) with regard to metal ions, such as Cu2+, Fe3+, Cr3+, Al3+, Zn2+, Co2+, Sn2+ and Ag+, was studied by fluorescence emission spectroscopy. The results demonstrate that the fluorescence intensity of P(MMA-co-RB) decreased gradually with an increase of the concentration of Cu2+ ion. Furthermore, a test strip made of P(MMA-co-RB) can be used for fast and quantitative determination of Cu2+ ion. In the presence of Cu2+ ion, the sensory tester undergoes distinct changes in fluorescence intensity and visible color.
Collapse
|
7
|
Zhao R, Zheng J, Chen Z, Wang M, Zhang D, Ding L, Fu C, Zhang C, Deng K. Synthesis and Aggregation‐Induced Emission of Polyamide‐Amines as Fluorescent Switch Controlled by Hg
2+
‐Glutathione. ChemistrySelect 2022. [DOI: 10.1002/slct.202103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronghui Zhao
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
- Affiliated Hospital of Hebei University Baoding 071000 China
| | - Jinxin Zheng
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Zhuo Chen
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Meng Wang
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Da Zhang
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Lan Ding
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Congcong Fu
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Chunfang Zhang
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Kuilin Deng
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| |
Collapse
|
8
|
Ma C, Han T, Niu N, Al-Shok L, Efstathiou S, Lester D, Huband S, Haddleton D. Well-defined polyacrylamides with AIE properties via rapid Cu-mediated living radical polymerization in aqueous solution: thermoresponsive nanoparticles for bioimaging. Polym Chem 2022. [DOI: 10.1039/d1py01432c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a requirement for the development of methods for the preparation of well-controlled polymers with aggregation-induced emission (AIE) properties.
Collapse
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Niu Niu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas Al-Shok
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL, UK
| | - Steven Huband
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - David Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
9
|
Ye X, Zhang D, Wang S, Zhou P, Zhu P. Fluorescent cellulose nanocrystals based on AIE luminogen for rapid detection of Fe 3+ in aqueous solutions. RSC Adv 2022; 12:24633-24639. [PMID: 36128393 PMCID: PMC9426647 DOI: 10.1039/d2ra04272j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Previously, we found that aggregation-induced emission (AIE) luminogen tetraphenylethylene (TPE) based fluorescent cellulose nanocrystals (TPE-CNCs) showed excellent AIE-active fluorescence properties and high selectivity and sensitivity for detecting nitrophenol explosives in aqueous solutions. Here, we further develop the application of TPE-CNCs for fluorescence detection of Fe3+ in aqueous solutions. The fluorescence of TPE-CNC aqueous suspensions is rapidly quenched (response time less than 10 s) due to the electron-transfer process between TPE and Fe3+ upon addition of Fe3+. TPE-CNCs have high sensitivity and selectivity toward Fe3+ over a broad pH range from 4 to 10. The limit of detection is determined to be 264 nM, which is below the World Health Organization (WHO) recommendations (5.36 μM) for Fe3+. Given the superior properties of TPE-CNCs, it has huge potential to be applied as a rapid and visual evaluation tool for drinking water quality. Collectively, we explore and develop fluorescent cellulose nanocrystals for multi-functional applications and TPE-CNCs can be used for practical applications in sensing, sewage treatment and bioimaging. AIE-active fluorescent cellulose nanocrystals (TPE-CNCs) is developed as a high selectivity and sensitivity fluorescent probe for rapid detection of Fe3+ in aqueous solutions.![]()
Collapse
Affiliation(s)
- Xiu Ye
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongyang Zhang
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Sai Wang
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Peng Zhou
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Zhang K, Wang X, Tian M, Gou Z, Zuo Y. The diversity of the coordination bond generated a POSS-based fluorescent probe for the reversible detection of Cu(II), Fe(III) and amino acids. J Mater Chem B 2021; 9:9744-9753. [PMID: 34787631 DOI: 10.1039/d1tb01947c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, it has been found that Cu2+, Fe3+, and amino acids play an irreplaceable and subtle role in organisms and have attracted the considerable attention of many researchers. Therefore, it is vital to design visual indicators to reveal the relationships between metal ions and amino acids. However, there have been few reports on this vigorous subject. Fortunately, based on the different coordination effects between metal ions and boron groups, we have designed an accessible fluorescent probe (PSI-A). Borane was introduced as an ion-sensitive group to form a novel POSS-based fluorescent probe, which achieves fascinating performance, in situ dynamic multiple detection, excellent photostability, and enervative biological toxicity. PSI-A exhibited predominant selectivity and sensitivity to Cu2+/amino acids and Fe3+/amino acids sequence reactions in HepG2 cells and zebrafish. The fluorescence of PSI-A was quenched by Cu2+, which can be recovered by adding Asp, Ser, Arg, Ace or Trp. Additionally, the fluorescence of PSI-A quenched by Fe3+ can be restored after adding Asp. PSI-A is available to monitor Cu2+/amino acids and Fe3+/amino acids sequence reactions and can be repeated for at least three consecutive cycles without a fatigued performance. Therefore, this multifunctional fluorescent probe may have prospective application potentials in the biological field.
Collapse
Affiliation(s)
- Kun Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Xiaoni Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
11
|
Kumar S, Arumugham H, Roy D, Kannaiyan D. Synthesis and characterization of fluorine functionalized graphene oxide dispersed quinoline‐based polyimide composites having low‐k and
UV
shielding properties. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvaraj Kumar
- Department of Chemistry Thiruvalluvar University Vellore India
| | - Hariharan Arumugham
- Polymer Engineering Laboratory PSG Institute of Technology and Applied Research Coimbatore India
| | - Debmalya Roy
- Defence Materials & Stores Research & Development Establishment DMSRDE PO Kanpur India
| | | |
Collapse
|
12
|
Wang D, Zhou X, Ma C, Liu M, Huang H, Zhang X, Wei Y. An amphiphilic fluorogen with aggregation-induced emission characteristic for highly sensitive and selective detection of Cu2+ in aqueous solution and biological system. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S. Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection. Molecules 2020; 25:E2548. [PMID: 32486124 PMCID: PMC7321262 DOI: 10.3390/molecules25112548] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Great efforts have been devoted to the invention of environmental sensors as the amount of water pollution has increased in recent decades. Chitosan, cellulose and nanocrystalline cellulose are examples of biopolymers that have been intensively studied due to their potential applications, particularly as sensors. Furthermore, the rapid use of conducting polymer materials as a sensing layer in environmental monitoring has also been developed. Thus, the incorporation of biopolymer and conducting polymer materials with various methods has shown promising potential with sensitively and selectively toward heavy metal ions. In this feature paper, selected recent and updated investigations are reviewed on biopolymer and conducting polymer-based materials in sensors aimed at the detection of heavy metal ions by optical methods. This review intends to provide sufficient evidence of the potential of polymer-based materials as sensing layers, and future outlooks are considered in developing surface plasmon resonance as an excellent and valid sensor for heavy metal ion detection.
Collapse
Affiliation(s)
- Nur Syahira Md Ramdzan
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.A.A.); (N.A.S.O.); (S.S.)
| | - Nur Ain Asyiqin Anas
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.A.A.); (N.A.S.O.); (S.S.)
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.A.A.); (N.A.S.O.); (S.S.)
| | - Silvan Saleviter
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.A.A.); (N.A.S.O.); (S.S.)
| |
Collapse
|
15
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
16
|
|
17
|
Qiao F, Ke J, Liu Y, Pei B, Hu Q, Tang BZ, Wang Z. Cationic quaternized chitosan bioconjugates with aggregation-induced emission features for cell imaging. Carbohydr Polym 2020; 230:115614. [DOI: 10.1016/j.carbpol.2019.115614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
|
18
|
Xiong S, Duan L, Cheng X. A novel coumarin-chitosan fluorescent hydrogel for the selective identification of Fe2+ in aqueous systems. Polym Chem 2020. [DOI: 10.1039/d0py00802h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional fluorescent hydrogels were synthesized, and they can detect and adsorb Fe2+ in aqueous solution.
Collapse
Affiliation(s)
- Shuangyu Xiong
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan
- China
| | - Lian Duan
- School of Textiles and Garments
- Southwest University
- Chongqing
- P. R. China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan
- China
| |
Collapse
|
19
|
Li T, Liu X, Li L, Wang Y, Ma P, Chen M, Dong W. Polydopamine-functionalized graphene oxide compounded with polyvinyl alcohol/chitosan hydrogels on the recyclable adsorption of cu(II), Pb(II) and cd(II) from aqueous solution. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1971-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Guan Q, Li N, Shi L, Yu C, Gao X, Yang J, Guo Y, Li P, Zhu X. Aggregation-Induced Emission Fluorophore-Based Molecular Beacon for Differentiating Tumor and Normal Cells by Detecting the Specific and False-Positive Signals. ACS Biomater Sci Eng 2019; 5:3618-3630. [DOI: 10.1021/acsbiomaterials.9b00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qinghua Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai 200025, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai 200032, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai 200025, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
21
|
Xu L, Zhou T, Liao M, Hu R, Tang BZ. Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and 2-Hydroxybenzonitrile/2-Aminobenzonitrile toward Multifunctional Iminocoumarin/Quinoline-Containing Poly( N-sulfonylimine)s. ACS Macro Lett 2019; 8:101-106. [PMID: 35619415 DOI: 10.1021/acsmacrolett.8b00884] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multicomponent polymerizations (MCPs) provide a powerful synthetic tool for the construction of polymers with complex structures and multifunctionalities, owing to their great structural diversity, mild condition, high efficiency, simple procedure, and environmental benefit. They possess significant advantages in synthesizing heteroatom-rich or heterocycle-containing functional polymers through directly constructing fused heterocycles from the MCP. In this work, the MCPs of diynes, disulfonyl azides, and 2-hydroxybenzonitrile or 2-aminobenzonitrile were reported under the catalysis of CuCl and Et3N, generating iminocoumarin/quinoline-containing poly(N-sulfonylimine)s with high molecular weights (up to 37700 g/mol) and high yields (up to 96%). The MCPs enjoy a wide monomer scope and high atom economy, releasing N2 as the only byproduct. The fluorescent poly(N-sulfonylimine) can be utilized for sensitive and selective detection of Ru3+, which also possesses antibacterial properties. The efficient MCPs could produce polymers with unique structures and functionalities, thereby accelerating the development of polymer materials.
Collapse
Affiliation(s)
- Liguo Xu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Taotao Zhou
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Min Liao
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Guan Q, Shi L, Li C, Gao X, Wang K, Liang X, Li P, Zhu X. A Fluorescent Cocktail Strategy for Differentiating Tumor, Inflammation, and Normal Cells by Detecting mRNA and H 2O 2. ACS Biomater Sci Eng 2019; 5:1023-1033. [PMID: 33405793 DOI: 10.1021/acsbiomaterials.8b01470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurately distinguishing tumors from noncancerous inflammation and normal tissues is hugely significent for tumor diagnosis and therapy. However, tumor and inflammatory tissues have similar pathologic characteristics in their microenvironment, making differentiation very difficult. Here, a fluorescent cocktail nanoparticle capable of simultaneously detecting intracellular mRNA and H2O2 was designed to differentiate tumors from nontumor cells. To detect targeted mRNA in living cells, a DNA probe was generated using the fluorescence resonance energy transfer (FRET) principle. A pH-responsive amphiphilic polymer was synthesized to realize the transportation of the DNA probe. In addition, the polymer was conjugated with a coumarin-boronic acid ester (Cou-BE) H2O2 probe. According to the change in the fluorescence of Cou-BE, tumor and inflammatory cells could be distinguished from normal cells owing to their high concentration of H2O2. Because of the different concentrations of tumor-related mRNA in tumor and nontumor cells, the fluorescence intensity of the DNA probe-loaded nanoparticles inside tumor cells was different from that inside inflammatory cells. Therefore, our fluorescent cocktail strategy could discriminate simultaneously tumor, inflammation, and normal cells through the cooperative detection of intracellular mRNA and H2O2, which demonstrated potential application value in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Qinghua Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunting Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
23
|
Tu J, Liu F, Wang J, Li X, Gong Y, Fan Y, Han M, Li Q, Li Z. Fluorine-Substituted Tetraphenylethene Isomers with Different Triboluminescence Properties. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jin Tu
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Fan Liu
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Jiaqiang Wang
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Xiaoyu Li
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Yanbin Gong
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Yunhao Fan
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Mengmeng Han
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Qianqian Li
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Zhen Li
- Department of Chemistry; Wuhan University; Wuhan 430072 China
- Institute of Molecular Aggregation Science; Tianjin University; Tianjin 300072 China
| |
Collapse
|
24
|
Affiliation(s)
- Fan Liu
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Qianqian Li
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Zhen Li
- Department of Chemistry; Wuhan University; Wuhan 430072 China
| |
Collapse
|
25
|
Liu G, Hu J, Liu S. Emerging Applications of Fluorogenic and Non-fluorogenic Bifunctional Linkers. Chemistry 2018; 24:16484-16505. [PMID: 29893499 DOI: 10.1002/chem.201801290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/06/2023]
Abstract
Homo- and hetero-bifunctional linkers play vital roles in constructing a variety of functional systems, ranging from protein bioconjugates with drugs and functional agents, to surface modification of nanoparticles and living cells, and to the cyclization/dimerization of synthetic polymers and biomolecules. Conventional approaches for assaying conjugation extents typically rely on ex situ techniques, such as mass spectrometry, gel electrophoresis, and size-exclusion chromatography. If the conjugation process involving bifunctional linkers was rendered fluorogenic, then in situ monitoring, quantification, and optical tracking/visualization of relevant processes would be achieved. In this review, conventional non-fluorogenic linkers are first discussed. Then the focus is on the evolution and emerging applications of fluorogenic bifunctional linkers, which are categorized into hetero-bifunctional single-caging fluorogenic linkers, homo-bifunctional double-caging fluorogenic linkers, and hetero-bifunctional double-caging fluorogenic linkers. In addition, stimuli-cleavable bifunctional linkers designed for both conjugation and subsequent site-specific triggered release are also summarized.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
26
|
Shi L, Guan Q, Gao X, Jin X, Xu L, Shen J, Wu C, Zhu X, Zhang C. Reaction-Based Color-Convertible Fluorescent Probe for Ferroptosis Identification. Anal Chem 2018; 90:9218-9225. [PMID: 29940728 DOI: 10.1021/acs.analchem.8b01721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ferroptosis is an iron-mediated, caspase-independent pathway of cell death that is accompanied with the accumulations of reactive oxygen species (ROS) and oxygenases, as well as being involved in many other pathophysiological procedures. However, specific and rapid monitoring of ferroptosis in living cells or tissues has not been achieved so far. Herein, a quinoxalinone-based fluorescent probe (termed as Quinos-4, or QS-4) with a reactive aromatic thioether moiety was designed for ferroptosis identification. Upon exposing it to high levels of ROS and hemeoxygenase-1 (HO-1), which are considered as the biochemical characteristics of ferroptosis, QS-4 could be oxidized into a sulfoxide derivative (QSO-4) and its original aggregation-induced enhanced red fluorescence emission could be converted to green fluorescence emission sharply. On the basis of this unique reaction-induced color conversion, this molecular probe can be employed for identifying the occurrence of ferroptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Leilei Shi
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Qinghua Guan
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xin Jin
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Li Xu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Nanjing Normal University , Nanjing 210046 , China
| | - Chenwei Wu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering , State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
27
|
Shi L, Gao X, Yuan W, Xu L, Deng H, Wu C, Yang J, Jin X, Zhang C, Zhu X. Endoplasmic Reticulum-Targeted Fluorescent Nanodot with Large Stokes Shift for Vesicular Transport Monitoring and Long-Term Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800223. [PMID: 29782699 DOI: 10.1002/smll.201800223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Herein, a highly stable aggregation-induced emission (AIE) fluorescent nanodot assembled by an amphiphilic quinoxalinone derivative-peptide conjugate, namely Quino-1-Fmoc-RACR (also termed as Q1-PEP), which exhibits large Stokes shift and an endoplasmic reticulum (ER)-targeting capacity for bioimaging is reported. It is found that the resulting nanodot can effectively enter the ER with high fluorescent emission. As the ER is mainly involved in the transport of synthesized proteins in vesicles to the Golgi or lysosomes, the Q1-PEP nanodot with ER-targeting capacity can be used to monitor vesicular transport inside the cells. Compared to conventional fluorescent dyes with small Stokes shifts, the self-assembled fluorescent nanodot shows superior resistance to photobleaching and aggregation-induced fluorescence quenching, and elimination of the spectra overlap with autofluorescence of biosubstrate owning to their AIE-active and red fluorescence emission characteristics. All these optical properties make the fluorescent nanodot suitable for noninvasive and long-term imaging both in vitro and in vivo.
Collapse
Affiliation(s)
- Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wangzhang Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chenwei Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
28
|
La DD, Bhosale SV, Jones LA, Bhosale SV. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12189-12216. [PMID: 29043778 DOI: 10.1021/acsami.7b12320] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This Review provides a comprehensive analysis of recent development in the field of aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) luminophores and their applications in biomolecular science. It begins with a discussion of the diverse range of structural motifs that have found particular applications in sensing, and demonstrates that TPE structures and their derivatives have been used for a diverse range of analytes such as such as H+, anions, cations, heavy metals, organic volatiles, and toxic gases. Advances are discussed in depth where TPE is utilized as a mechanoluminescent material in bioinspired receptor units with specificity for analytes for such as glucose or RNA. The rapid advances in sensor research make this summary of recent developments in AIE-active TPE luminophores timely, in order to disseminate the advantages of these materials for sensing of analytes in solution, as well as the importance of solid and aggregated states in controlling sensing behavior.
Collapse
Affiliation(s)
| | - Sidhanath V Bhosale
- Polymers and Functional Material Division , CSIR-Indian Institute of Chemical Technology , Hyderabad , 500 007 Telangana , India
| | | | | |
Collapse
|
29
|
Xiong Q, Shi H, Li S, Chen Y, Zhao Y, Jing Y, Yuan J, Lai X. Perspective: Aggregation-induced emission as an emerging strategy for exploring pharmacokinetics of oral polysaccharides. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1430235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qingping Xiong
- Key Laboratory of medicinal exploitation and utilization of regional resources, and College of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an, Jiangsu, PR China
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and School of Pharmaceutical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Haojie Shi
- School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou, PR China
| | - Shijie Li
- Key Laboratory of medicinal exploitation and utilization of regional resources, and College of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and School of Pharmaceutical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yao Chen
- Key Laboratory of medicinal exploitation and utilization of regional resources, and College of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yonglin Zhao
- Key Laboratory of medicinal exploitation and utilization of regional resources, and College of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yi Jing
- Key Laboratory of medicinal exploitation and utilization of regional resources, and College of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Jun Yuan
- Key Laboratory of medicinal exploitation and utilization of regional resources, and College of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huai'an, Jiangsu, PR China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and School of Pharmaceutical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
30
|
To form AIE product with the target analyte: A new strategy for excellent fluorescent probes, and convenient detection of hydrazine in seconds with test strips. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9116-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Wang Z, Yang L, Liu Y, Huang X, Qiao F, Qin W, Hu Q, Tang BZ. Ultra long-term cellular tracing by a fluorescent AIE bioconjugate with good water solubility over a wide pH range. J Mater Chem B 2017; 5:4981-4987. [DOI: 10.1039/c7tb00861a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TPE-NSCS, which displayed an AIE effect, could be solubilized in water over a wide pH range, and used in cell tracing for 30 passages.
Collapse
Affiliation(s)
- Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yalan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaofei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Fenghui Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wei Qin
- Department of Chemistry
- Hong Kong University of Science and Technology
- Clear Water Bay
- China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ben Zhong Tang
- Department of Chemistry
- Hong Kong University of Science and Technology
- Clear Water Bay
- China
| |
Collapse
|