1
|
Hou B, Shan X, Jiang X, Li J. Synthesis of a phosphorus-containing L-lactic acid-based flame-retardant plasticizer for simultaneously enhancing flexibility and flame retardancy of poly(lactic acid). Int J Biol Macromol 2024; 279:135420. [PMID: 39245091 DOI: 10.1016/j.ijbiomac.2024.135420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
This work provides a straightforward strategy for synthesizing efficient bio-based flame-retardant plasticizers, offering promising prospects for flame-retardant flexible materials. Poly(lactic acid) (PLA) has garnered significant attention as an environmentally friendly polymer among numerous biodegradable materials. However, its high flammability and brittleness severely hinder its application in the field of electronics and electrical devices. To address these challenges, a bio-based flame-retardant plasticizer (EPDL) was designed and synthesized using renewable L-lactic acid, which significantly enhances the flexibility and flame retardancy of PLA. Incorporating 40 phr EPDL resulted in PLA achieving UL94 V-0 grade and a limiting oxygen index of 34.3 %, demonstrating excellent flame-retardant properties. Meanwhile, the peak of heat release rate and total heat release of PLA/EPDL blends exhibited a marked reduction by 23.1 % and 34.1 % compared to that of pristine PLA, respectively. The flame-retardant action mode of EPDL is the combination of gas phase and condensed phase action. Additionally, the introduction of 40 phr EPDL significantly enhanced the ductility of PLA, resulting in a substantial rise in the elongation at break of the PLA/EPDL to 181.8 %, which is approximately 52 times higher than neat PLA. Intriguingly, the crystallization performance of PLA was enhanced by the presence of EPDL.
Collapse
Affiliation(s)
- Boyou Hou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xueying Shan
- School of Safety Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xintong Jiang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Zhang D, Pei M, Wei K, Tan F, Gao C, Bao D, Qin S. Flame-Retardant Properties and Mechanism of Polylactic Acid-Conjugated Flame-Retardant Composites. Front Chem 2022; 10:894112. [PMID: 35646831 PMCID: PMC9130745 DOI: 10.3389/fchem.2022.894112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The DOPO derivative-conjugated flame retardant 4, 4'-{1'', 4'' - phenylene - bis [amino - (10‴ - oxy -10‴-hydro-9‴-hydrogen-10‴ λ5 -phosphaphenanthrene-10''-yl)-methyl]}-diphenol (P-PPD-Ph) with two hydroxyl groups was synthesized. Polylactic acid conjugated flame-retardant composites with P-PPD-Ph were papered by using a twin-screw extruder. The flame-retardant properties of polylactic acid-conjugated flame-retardant composites were investigated. The flame-retardant properties of PLA-conjugated flame-retardant composites were characterized by the limiting oxygen index (LOI) and the vertical burning test (UL94). The results showed that the PLA-conjugated flame-retardant composites achieved a V-0 rating (UL-94, 3.2 mm) when the conjugated flame retardant was added at 5 wt%, and increase in LOI value from 22.5% to 31.4% relative to composites without added conjugated flame retardant. The flame-retardant mechanism of PLA-conjugated flame-retardant composites were further studied by TG-FTIR, the results showed that the P-PPD-Ph promoted the PLA-conjugated flame-retardant composites to decompose and also released fragments with quenching and dilution, which suggests that P-PPD-Ph for PLA-conjugated flame-retardant composites mainly play a role of the gas-phase flame retardant.
Collapse
Affiliation(s)
- Daohai Zhang
- School of Chemical Engineering of Guizhou Minzu University, Guizhou, China
- *Correspondence: Daohai Zhang, ; Chengtao Gao, ; Dongmei Bao, ; Shuhao Qin,
| | - Meng Pei
- School of Chemical Engineering of Guizhou Minzu University, Guizhou, China
| | - Ke Wei
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou, China
| | - Fang Tan
- School of Chemical Engineering of Guizhou Minzu University, Guizhou, China
| | - Chengtao Gao
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou, China
- *Correspondence: Daohai Zhang, ; Chengtao Gao, ; Dongmei Bao, ; Shuhao Qin,
| | - Dongmei Bao
- School of Chemical Engineering of Guizhou Minzu University, Guizhou, China
- *Correspondence: Daohai Zhang, ; Chengtao Gao, ; Dongmei Bao, ; Shuhao Qin,
| | - Shuhao Qin
- School of Chemical Engineering of Guizhou Minzu University, Guizhou, China
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou, China
- *Correspondence: Daohai Zhang, ; Chengtao Gao, ; Dongmei Bao, ; Shuhao Qin,
| |
Collapse
|
3
|
Chen Y, Wu X, Li M, Qian L, Zhou H. Mechanically Robust and Flame-Retardant Polylactide Composites Based on In Situ Formation of Crosslinked Network Structure by DCP and TAIC. Polymers (Basel) 2022; 14:308. [PMID: 35054714 PMCID: PMC8782028 DOI: 10.3390/polym14020308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023] Open
Abstract
The addition of intumescent flame retardant to PLA can greatly improve the flame retardancy of the material and inhibit the dripping, but the major drawback is the adverse impact of the mechanical properties of the material. In this study, we found that the flame retardant and mechanical properties of the materials can be improved simultaneously by constructing a cross-linked structure. Firstly, a cross-linking flame-retardant PLA structure was designed by adding 0.9 wt% DCP and 0.3 wt% TAIC. After that, different characterization methods including torque, melt flow rate, molecular weight and gel content were used to clarify the formation of crosslinking structures. Results showed that the torque of 0.9DCP/0.3TAIC/FRPLA increased by 307% and the melt flow rate decreased by 77.8%. The gel content of 0.9DCP/0.3TAIC/FRPLA was 30.8%, indicating the formation of cross-linked structures. Then, the mechanical properties and flame retardant performance were studied. Results showed that, compared with FRPLA, the tensile strength, elongation at break and impact strength of 0.9DCP/0.3TAIC/FRPLA increased by 34.8%, 82.6% and 42.9%, respectively. The flame retardancy test results showed that 0.9DCP/0.3TAIC/FRPLA had a very high LOI (the limiting oxygen index) value of 39.2% and passed the UL94 V-0 level without dripping. Finally, the crosslinking reaction mechanism, flame retardant mechanism and the reasons for the improvement of mechanical properties were studied and described.
Collapse
Affiliation(s)
- Yajun Chen
- School of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (M.L.); (H.Z.)
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center, Beijing 100048, China
- Petroleum and Chemical Industry Engineering Laboratory of Non-Halogen Flame Retardants for Polymers, Beijing 100048, China
| | - Xingde Wu
- School of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (M.L.); (H.Z.)
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center, Beijing 100048, China
- Petroleum and Chemical Industry Engineering Laboratory of Non-Halogen Flame Retardants for Polymers, Beijing 100048, China
| | - Mengqi Li
- School of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (M.L.); (H.Z.)
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center, Beijing 100048, China
- Petroleum and Chemical Industry Engineering Laboratory of Non-Halogen Flame Retardants for Polymers, Beijing 100048, China
| | - Lijun Qian
- School of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (M.L.); (H.Z.)
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center, Beijing 100048, China
- Petroleum and Chemical Industry Engineering Laboratory of Non-Halogen Flame Retardants for Polymers, Beijing 100048, China
| | - Hongfu Zhou
- School of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (M.L.); (H.Z.)
| |
Collapse
|
4
|
Yang P, Wu H, Yang F, Yang J, Wang R, Zhu Z. A Novel Self-Assembled Graphene-Based Flame Retardant: Synthesis and Flame Retardant Performance in PLA. Polymers (Basel) 2021; 13:polym13234216. [PMID: 34883719 PMCID: PMC8659536 DOI: 10.3390/polym13234216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel flame retardant (PMrG) was developed by self-assembling melamine and phytic acid (PA) onto rGO, and then applying it to the improvement of the flame resistance of PLA. PMrG simultaneously decreases the peak heat release rate (pHRR) and the total heat release (THR) of the composite during combustion, and enhances the LOI value and the time to ignition (TTI), thus significantly improving the flame retardancy of the composite. The flame retardant mechanism of the PMrG is also investigated. On one hand, the dehydration of PA and the decomposition of melamine in PMrG generate non-flammable volatiles, such as H2O and NH3, which dilute the oxygen concentration around the combustion front of the composite. On the other hand, the rGO, melamine, and PA components in PMrG create a synergistic effect in promoting the formation of a compact char layer during the combustion, which plays a barrier role and effectively suppresses the release of heat and smoke. In addition, the PMrGs in PLA exert a positive effect on the crystallization of the PLA matrix, thus playing the role of nucleation agent.
Collapse
|
5
|
Chen Y, Wu X, Li M, Qian L, Zhou H. Construction of crosslinking network structures by adding
ZnO
and
ADR
in intumescent flame retardant
PLA
composites. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yajun Chen
- School of Chemical and Materials Engineering, Beijing Technology and Business University Beijing China
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
| | - Xingde Wu
- School of Chemical and Materials Engineering, Beijing Technology and Business University Beijing China
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
| | - Mengqi Li
- School of Chemical and Materials Engineering, Beijing Technology and Business University Beijing China
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
| | - Lijun Qian
- School of Chemical and Materials Engineering, Beijing Technology and Business University Beijing China
- China Light Industry Advanced Flame Retardant Engineering Technology Research Center Beijing China
- Petroleum and Chemical Industry Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
| | - Hongfu Zhou
- School of Chemical and Materials Engineering, Beijing Technology and Business University Beijing China
| |
Collapse
|
6
|
Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles: Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2565-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fan M, Zhou M, Deng S, Chen F, Zhang Q, Fu Q. Property enhancement of poly(butylene succinate)/poly(ethyleneglycol- co
-cyclohexane-1,4-dimethanolterephthalate) blends via high-speed extrusion and in situ
fibrillation. J Appl Polym Sci 2019. [DOI: 10.1002/app.47549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mao Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Sha Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Feng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
9
|
Mo YL, Tian YX, Liu YH, Chen F, Fu Q. Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2264-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2202-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Bai D, Diao X, Ju Y, Liu H, Bai H, Zhang Q, Fu Q. Low-temperature sintering of stereocomplex-type polylactide nascent powder: The role of optical purity in directing the chain interdiffusion and cocrystallization across the particle interfaces. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|