Miao W, Wu F, Zhou S, Yao G, Li Y, Wang Z. Epitaxial Crystallization of Poly(ε-caprolactone) on Reduced Graphene Oxide at a Low Shear Rate by
In Situ SAXS/WAXD Methods.
ACS OMEGA 2020;
5:31535-31542. [PMID:
33344805 PMCID:
PMC7745218 DOI:
10.1021/acsomega.0c03410]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The interfacial interaction between polymers and reinforcements has a positive effect on the properties of polymer nanocomposites, and a further study on the evolution of this interfacial interaction under a shear field is conducive to reasonable regulation of the properties of polymer nanocomposites. For this purpose, epitaxial crystallization of poly(ε-caprolactone) (PCL) on reduced graphene oxide (RGO) is investigated by shearing at the shear rate of 3 s-1 by in situ synchrotron radiation. In situ two-dimensional small-angle X-ray scattering (2D SAXS) results suggest that the imposed shear field promotes the orientation of the polymer chains, resulting in the formation of a large periodic structure of PCL on the RGO surface. In addition, higher shear temperatures facilitate the conformational adjustment of the PCL molecular chain on RGO at the shear rate of 3 s-1, resulting in the formation of thicker lamellae. In situ two-dimensional wide-angle X-ray diffraction (2D WAXD) results show that shear enhances the crystallinity of the PCL/RGO nanocomposite and promotes the oriented growth of epitaxial and bulk crystals. The current findings can improve the understanding of the structural evolution behavior of PCL/RGO nanocomposites after shear and especially enhance dramatically our understanding of the underlying mechanism of influence of shear on interfacial epitaxial crystallization in polymer/graphene nanocomposite systems.
Collapse