1
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Yin F, Liu Q, Hu J, Ju Y. Natural Oleanolic Acid-Tailored Eutectogels Featuring Multienvironment Shape Memory Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6424-6432. [PMID: 38264907 DOI: 10.1021/acsami.3c17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Shape memory gels, one of the primary modern smart materials, hold great promise in a myriad of applications spanning from soft robotics to medical devices. Nevertheless, most shape memory gels rely on water, organic solvents, and ionic liquids as dispersion mediums, posing the risks of freezing, dehydration, and toxicity to humans or environment. Herein, we have developed a thermoresponsive shape memory eutectogel by introducing an oleanolic acid-modified polyacrylamide network into a deep eutectic solvent (DES). The resulting eutectogel shows a fracture strength of 4.46 MPa along with elongation of 345%, Young's modulus of 14.83 MPa, and toughness of 9.51 MJ m-3. Thanks to the low freezing point and low volatility inherited from DES, this eutectogel possesses good antifreezing and long-term storage stability, which facilitate the shape memory behavior both in silicone oil and in air. The shape fixity and shape recovery ratios of this eutectogel maintain almost 90% during 10 cycles in silicone oil and more than 70% during four cycles in air that cannot be realized in hydrogels. By virtue of shape memory effect and conductivity, the eutectogel can be further used as a thermoswitch. This work presents a simple approach to fabricating shape memory eutectogels and imparts exciting prospects to smart eutectogels.
Collapse
Affiliation(s)
- Feng Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qian Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Nistor M, Rugina D, Diaconeasa Z, Socaciu C, Socaciu MA. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int J Mol Sci 2023; 24:12923. [PMID: 37629103 PMCID: PMC10455110 DOI: 10.3390/ijms241612923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Mihai Adrian Socaciu
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Department of Radiology, Imaging & Nuclear Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Zheng DW, Qiao JY, Ma JC, An JX, Yang CH, Zhang Y, Cheng Q, Rao ZY, Zeng SM, Wang L, Zhang XZ. A Microbial Community Cultured in Gradient Hydrogel for Investigating Gut Microbiome-Drug Interaction and Guiding Therapeutic Decisions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300977. [PMID: 37029611 DOI: 10.1002/adma.202300977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Indexed: 06/02/2023]
Abstract
Despite the recognition that the gut microbiota acts a clinically significant role in cancer chemotherapy, both mechanistic understanding and translational research are still limited. Maximizing drug efficacy requires an in-depth understanding of how the microbiota contributes to therapeutic responses, while microbiota modulation is hindered by the complexity of the human body. To address this issue, a 3D experimental model named engineered microbiota (EM) is reported for bridging microbiota-drug interaction research and therapeutic decision-making. EM can be manipulated in vitro and faithfully recapitulate the human gut microbiota at the genus/species level while allowing co-culture with cells, organoids, and isolated tissues for testing drug responses. Examination of various clinical and experimental drugs by EM reveales that the gut microbiota affects drug efficacy through three pathways: immunological effects, bioaccumulation, and drug metabolism. Guided by discovered mechanisms, custom-tailored strategies are adopted to maximize the therapeutic efficacy of drugs on orthotopic tumor models with patient-derived gut microbiota. These strategies include immune synergy, nanoparticle encapsulation, and host-guest complex formation, respectively. Given the important role of the gut microbiota in influencing drug efficacy, EM will likely become an indispensable tool to guide drug translation and clinical decision-making.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun-Chi Ma
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chi-Hui Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian Cheng
- Research Center for Tissue Engineering and Regenerative Medicine & Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
- Research Center for Tissue Engineering and Regenerative Medicine & Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Min Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine & Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
5
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
6
|
Huang YK, Tian HR, Zhang MZ, He JL, Liu J, Ni PH. Monoclonal Antibody-conjugated Polyphosphoester-hyd-DOX Prodrug Nanoparticles for Targeted Chemotherapy of Liver Cancer Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2582-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Nanoformulations for Delivery of Pentacyclic Triterpenoids in Anticancer Therapies. Molecules 2021; 26:molecules26061764. [PMID: 33801096 PMCID: PMC8004206 DOI: 10.3390/molecules26061764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The search for safe and effective anticancer therapies is one of the major challenges of the 21st century. The ineffective treatment of cancers, classified as civilization diseases, contributes to a decreased quality of life, health loss, and premature mortality in oncological patients. Many natural phytochemicals have anticancer potential. Pentacyclic triterpenoids, characterized by six- and five-membered ring structures, are one of the largest class of natural metabolites sourced from the plant kingdom. Among the known natural triterpenoids, we can distinguish lupane-, oleanane-, and ursane-types. Pentacyclic triterpenoids are known to have many biological activities, e.g., anti-inflammatory, antibacterial, hepatoprotective, immunomodulatory, antioxidant, and anticancer properties. Unfortunately, they are also characterized by poor water solubility and, hence, low bioavailability. These pharmacological properties may be improved by both introducing some modifications to their native structures and developing novel delivery systems based on the latest nanotechnological achievements. The development of nanocarrier-delivery systems is aimed at increasing the transport capacity of bioactive compounds by enhancing their solubility, bioavailability, stability in vivo and ensuring tumor-targeting while their toxicity and risk of side effects are significantly reduced. Nanocarriers may vary in sizes, constituents, shapes, and surface properties, all of which affect the ultimate efficacy and safety of a given anticancer therapy, as presented in this review. The presented results demonstrate the high antitumor potential of systems for delivery of pentacyclic triterpenoids.
Collapse
|
8
|
Oleanolicacid-Chitosan Nanocomplex Induced Apoptotic Cell Death Through Mitochondrial Dysfunction in Human Lung Carcinoma: An Improved Synergetic Drug System for Cancer Therapy. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01934-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|