1
|
Yang L, Li L, Lu J, Lin B, Fu L, Xu C. Flexible Photothermal Materials with Controllable Accurate Healing and Reversible Adhesive Abilities. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Li Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Luji Li
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lihua Fu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| |
Collapse
|
2
|
Kumar A, Connal LA. Biobased Transesterification Vitrimers. Macromol Rapid Commun 2023; 44:e2200892. [PMID: 36661130 DOI: 10.1002/marc.202200892] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Indexed: 01/21/2023]
Abstract
The rapid increase in the use of plastics and the related sustainability issues, including the depletion of global petroleum reserves, have rightly sparked interest in the use of biobased polymer feedstocks. Thermosets cannot be remolded, processed, or recycled, and hence cannot be reused because of their permanent molecular architecture. Vitrimers have emerged as a novel polymer family capable of bridging the difference between thermoplastic and thermosets. Vitrimers enable unique recycling strategies, however, it is still important to understand where the raw material feedstocks originate from. Transesterification vitrimers derived from renewable resources are a massive opportunity, however, limited research has been conducted in this specific family of vitrimers. This review article provides a comprehensive overview of transesterification vitrimers produced from biobased monomers. The focus is on the biomass structural suitability with dynamic covalent chemistry, as well as the viability of the synthetic methods.
Collapse
Affiliation(s)
- Ashwani Kumar
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Luke A Connal
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
3
|
He J, Khalesi H, Zhang Y, Zhao Y, Fang Y. Jerky-Inspired Fabrication of Anisotropic Hydrogels with Widely Tunable Mechanical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10986-10993. [PMID: 36045549 DOI: 10.1021/acs.langmuir.2c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Jerky is a type of meat product traditionally produced using a hang-drying process to achieve desirable textural properties. Inspired by the jerky processing, we present a strategy for fabricating strong alginate hydrogels with highly anisotropic structures via stretching and drying under constant stress. The tunable stretching process endowed the alginate hydrogels with adjustable mechanical properties and structural features by promoting the orientation and aggregation of the constituent polymers. At a high water content of about 80%, the tensile strength of the obtained hydrogel was increased to 20 MPa, which was 10 times higher than that of the hydrogel without the stretching process. Moreover, these hydrogels can be favorably compared with other common structural materials. This paper introduces a facile strategy to tune the structural alignment and mechanical properties of hydrogels, which will expand the applicability of the natural hydrogels formed by non-covalent interactions.
Collapse
Affiliation(s)
- Jun He
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hoda Khalesi
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yiguo Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Wang J, Xia B, Su T, Lin T, Gao M, Zhao C, Wu X, Lin C. Recyclable photoluminescent composites via incorporating
ZnS
‐based phosphors into dynamic crosslinking elastomeric matrixes. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinyun Wang
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
- College of Physical Science and Technology Northwestern Polytechnical University Xi'an P. R. China
| | - Biao Xia
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Tong Su
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Tengfei Lin
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Min Gao
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Chunlin Zhao
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Xiao Wu
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| | - Cong Lin
- College of Materials Science and Engineering Fuzhou University Fuzhou P. R. China
| |
Collapse
|
5
|
Yue L, Ke K, Amirkhosravi M, Gray TG, Manas-Zloczower I. Catalyst-Free Mechanochemical Recycling of Biobased Epoxy with Cellulose Nanocrystals. ACS APPLIED BIO MATERIALS 2021; 4:4176-4183. [PMID: 35006830 DOI: 10.1021/acsabm.0c01670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mechanochemical vitrimerization, as a method to recycle cross-linked thermosets by converting the permanent network into a recyclable and reprocessable vitrimer network, inevitably requires a catalyst to accelerate the bond exchange reactions. Here, we demonstrate a catalyst-free approach to achieve the recycling of a cross-linked biobased epoxy into high-performance nanocomposites with cellulose nanocrystals (CNCs). CNCs provide abundant free hydroxyl groups to promote the transesterification exchange reactions while also acting as reinforcing fillers for the resultant nanocomposites. This technique introduces an effective way to fabricate high-performance thermoset nanocomposites based on recycled polymers in an ecofriendly way, promoting the recycle and reuse of thermosets as sustainable nanocomposites for different applications.
Collapse
Affiliation(s)
- Liang Yue
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mehrad Amirkhosravi
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Ica Manas-Zloczower
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, United States
| |
Collapse
|
6
|
Ran Y, Zheng LJ, Zeng JB. Dynamic Crosslinking: An Efficient Approach to Fabricate Epoxy Vitrimer. MATERIALS (BASEL, SWITZERLAND) 2021; 14:919. [PMID: 33672022 PMCID: PMC7919274 DOI: 10.3390/ma14040919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
Epoxy vitrimers with reprocessability, recyclability, and a self-healing performance have attracted increasingly attention, but are usually fabricated through static curing procedures with a low production efficiency. Herein, we report a new approach to fabricate an epoxy vitrimer by dynamic crosslinking in a torque rheometer, using diglycidyl ether of bisphenol A and sebacic acid as the epoxy resin and curing agent, respectively, in the presence of zinc acetylacetonate as the transesterification catalyst. The optimal condition for fabricating the epoxy vitrimer (EVD) was dynamic crosslinking at 180 °C for ~11 min. A control epoxy vitrimer (EVS) was prepared by static curing at 180 °C for ~11 min. The structure, properties, and stress relaxation of the EVD and EVS were comparatively investigated in detail. The EVS did not cure completely during static curing, as evidenced by the continuously increasing gel fraction when subjected to compression molding. The gel fraction of the EVD did not change with compression molding at the same condition. The physical, mechanical, and stress relaxation properties of the EVD prepared by dynamic crosslinking were comparable to those of the EVS fabricated by static curing, despite small differences in the specific property parameters. This study demonstrated that dynamic crosslinking provides a new technique to efficiently fabricate an epoxy vitrimer.
Collapse
Affiliation(s)
| | | | - Jian-Bing Zeng
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.R.); (L.-J.Z.)
| |
Collapse
|