1
|
Li X, Hu Z, Mahmood Q, Wang Y, Sohail S, Zou S, Liang T, Sun WH. Thermally stable C2-symmetric α-diimine nickel precatalysts for ethylene polymerization: semicrystalline to amorphous PE with high tensile and elastic properties. Dalton Trans 2024. [PMID: 39450637 DOI: 10.1039/d4dt02543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In α-diimine nickel catalyst-mediated ethylene polymerization, adjusting catalytic parameters such as steric and electronic factors, as well as spectator ligands, offers an intriguing approach for tailoring the thermal and physical properties of the resulting products. This study explores two sets of C2-symmetric α-diimine nickel complexes-nickel bromide and nickel chloride-where ortho-steric and electronic substituents, as well as nickel halide, were varied to regulate simultaneously chain walking, chain transfer, and the properties of the polymers produced. These complexes were activated in situ with Et2AlCl, resulting in exceptionally high catalytic activities (in the level of 106-107 g (PE) mol-1 (Ni) h-1) under all reaction conditions. Nickel bromide complexes, with higher ortho-steric hindrance, exhibited superior catalytic activity compared to their less hindered counterparts, whereas the reverse was observed for complexes containing chloride. Increased steric hindrance in both sets of complexes facilitated higher polymer molecular weights and promoted chain walking reactions at lower reaction temperature (40 °C), while the effect became less pronounced at higher temperature (100 °C). However, the electron-withdrawing effect of ortho-substituents hindered the rate of monomer insertion, chain propagation, and chain walking reactions, leading to the synthesis of semi-crystalline polyethylene with an exceptionally high melt temperature of 134.6 °C and a high crystallinity of up to 31.9%. Most importantly, nickel bromide complexes demonstrated significantly higher activity compared to their chloride counterparts, while the latter yielded polymers with higher molecular weights and increased melt temperatures. These high molecular weights, coupled with controlled branching degrees, resulted in polyethylenes with excellent tensile strength (up to 13.9 MPa) and excellent elastic properties (up to 81%), making them suitable for a broad range of applications.
Collapse
Affiliation(s)
- Xiaoxu Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Zexu Hu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sunny Sohail
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Song Zou
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Wen-Hua Sun
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Dai J, Dai S. Impact of o-aryl halogen effects on ethylene polymerization: steric vs. electronic effects. Dalton Trans 2024; 53:9286-9293. [PMID: 38712871 DOI: 10.1039/d4dt00850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ligand steric hindrance and electronic effects play a crucial role in late-transition metal-catalyzed olefin polymerization. In this research, a series of o-aryl halogenated α-diimine ligands bearing bulky dibenzhydryl substituents, along with their corresponding nickel catalysts, have been synthesized and thoroughly characterized. The nickel catalysts demonstrated very high activity in ethylene polymerization, achieving a high rate of up to 107 g mol-1 h-1. The produced polyethylenes displayed a broad spectrum of molecular weights (12.2-871.7 kg mol-1) but maintained consistent branching densities (50-82/1000 C) when polymerized at a fixed temperature with different nickel catalysts. Notably, the polymerization temperature has a significant influence on both the molecular weight and branching density of the resulting polyethylene. Higher temperatures led to the formation of polyethylenes with lower molecular weights and increased branching densities. Interestingly, the o-aryl halogens significantly impact the molecular weight of the polyethylene. The size of the halogen substituents primarily determines the molecular weight of the polyethylene. However, in terms of branching density, the steric and electronic effects of these substituents appear to counteract each other. In addition, the branched high molecular weight polyethylenes from the bromine and chlorine substituted nickel catalysts are excellent polyethylene thermoplastic elastomers with high strain at break values (688-2478%) and high strain recovery values (42-62%).
Collapse
Affiliation(s)
- Jianjian Dai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
3
|
Duan S, Zhang X, Li X, Chi Z, Xie Z. Total Synthesis of Guajavadimer A via Lewis Acid-Catalyzed Cascade Double Hetero-Diels-Alder Reactions. Org Lett 2023; 25:6987-6992. [PMID: 37725076 DOI: 10.1021/acs.orglett.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The first total synthesis of guajavadimer A, a dimeric caryophyllene-derived meroterpenoid featuring an unprecedented 4-9-6-6-6-9-4-fused ring system, is reported. Key to the approach is the construction of the pyrano[4,3,2-de]chromene core via a cascade of double hetero-Diels-Alder reactions. Practically, a 4-substituted-2,6-dihydroxybenzaldehyde dimethyl acetal serves as an effective surrogate for ortho-quinone methide, which is generated from the corresponding aldehyde and trimethyl orthoformate, with β-caryophyllene undergoing cycloaddition to generate pyrano[4,3,2-de]chromene derivatives with excellent regioselectivity and stereoselectivity in one pot under mild conditions.
Collapse
Affiliation(s)
- Shengfu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangxin Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhiyong Chi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Lu Z, Xu X, Luo Y, He S, Fan W, Dai S. Unexpected Effect of Catalyst’s Structural Symmetry on the Branching Microstructure of Polyethylene in Late Transition Metal Polymerization Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhou Lu
- School of Chemical and Environmental Engineering, Anhui University, Wuhu, Anhui 241000, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Polytechnic University, Hefei, Anhui 230601, China
| | - Xiaowei Xu
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Yi Luo
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shengbao He
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Polytechnic University, Hefei, Anhui 230601, China
| | - Shengyu Dai
- School of Chemical and Environmental Engineering, Anhui University, Wuhu, Anhui 241000, China
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Polytechnic University, Hefei, Anhui 230601, China
| |
Collapse
|
5
|
Unsymmetrical Strategy on α-Diimine Nickel and Palladium Mediated Ethylene (Co)Polymerizations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248942. [PMID: 36558079 PMCID: PMC9785926 DOI: 10.3390/molecules27248942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Among various catalyst design strategies used in the α-diimine nickel(II) and palladium(II) catalyst systems, the unsymmetrical strategy is an effective and widely utilized method. In this contribution, unsymmetrical nickel and palladium α-diimine catalysts (Ipty/iPr-Ni and Ipty/iPr-Pd) derived from the dibenzobarrelene backbone were constructed via the combination of pentiptycenyl and diisopropylphenyl substituents, and investigated toward ethylene (co)polymerization. Both of these catalysts were capable of polymerizing ethylene in a broad temperature range of 0-120 °C, in which Ipty/iPr-Ni could maintain activity in the level of 106 g mol-1 h-1 even at 120 °C. The branching densities of polyethylenes generated by both nickel and palladium catalysts could be modulated by the reaction temperature. Compared with symmetrical Ipty-Ni and iPr-Ni, Ipty/iPr-Ni exhibited the highest activity, the highest polymer molecular weight, and the lowest branching density. In addition, Ipty/iPr-Pd could produce copolymers of ethylene and methyl acrylate, with the polar monomer incorporating both on the main chain and the terminal of branches. Remarkably, the ratio of the in-chain and end-chain polar monomer incorporations could be modulated by varying the temperature.
Collapse
|
6
|
Controllable Preparation of Branched Polyolefins with Various Microstructural Units via Chain-walking Ethylene and Pentene Polymerizations. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
8
|
Chu YK, Hu XQ, Zhang Y, Liu DJ, Zhang YX, Jian ZB. Influence of Backbone and Axial Substituent of Catalyst on α-Imino-ketone Nickel Mediated Ethylene (Co)Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2691-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Xia J, Kou S, Zhang Y, Jian Z. Strategies cooperation on designing nickel catalysts to access ultrahigh molecular weight polyethylenes. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Cui L, Chu YK, Liu DJ, Han YF, Mu HL, Jian ZB. Enhancement on Hemilabile Phosphine-Amide Palladium and Nickel Catalysts for Ethylene (Co)Polymerization with Polar Monomers Using a Cyclizing Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Zhang Y, Jian Z. Polar additive triggered chain walking copolymerization of ethylene and fundamental polar monomers. Polym Chem 2022. [DOI: 10.1039/d2py00934j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of a polar additive efficiently triggers chain walking copolymerization of ethylene with a broad scope of fundamental polar monomers, which is long-sought in an α-diimine Pd(ii) system.
Collapse
Affiliation(s)
- Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|