1
|
Tan Z, Pan K, Sun M, Pan X, Yang Z, Chang Z, Yang X, Zhu J, Zhan L, Liu Y, Li X, Lin K, Chen L, Mo H, Luo W, Kan C, Duan L, Zheng H. CCKBR+ cancer cells contribute to the intratumor heterogeneity of gastric cancer and confer sensitivity to FOXO inhibition. Cell Death Differ 2024; 31:1302-1317. [PMID: 39164456 PMCID: PMC11445462 DOI: 10.1038/s41418-024-01360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
The existence of heterogeneity has plunged cancer treatment into a challenging dilemma. We profiled malignant epithelial cells from 5 gastric adenocarcinoma patients through single-cell sequencing (scRNA-seq) analysis, demonstrating the heterogeneity of gastric adenocarcinoma (GA), and identified the CCKBR+ stem cell-like cancer cells associated poorly differentiated and worse prognosis. We further conducted targeted analysis using single-cell transcriptome libraries, including 40 samples, to confirm these screening results. In addition, we revealed that FOXOs are involved in the progression and development of CCKBR+ gastric adenocarcinoma. Inhibited the expression of FOXOs and disrupting cancer cell stemness reduce the CCKBR+ GA organoid formation and impede tumor progression. Mechanically, CUT&Tag sequencing and Lectin pulldown revealed that FOXOs can activate ST3GAL3/4/5 as well as ST6GALNAC6, promoting elevated sialyation levels in CCKBR+ tumor cells. This FOXO-sialyltransferase axis contributes to the maintenance of homeostasis and the growth of CCKBR+ tumor cells. This insight provides novel perspectives for developing targeted therapeutic strategies aimed at the treating CCKBR associated gastric cancer.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ke Pan
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minqiong Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xianzhu Pan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical College, Hefei, 230032, China
| | - Zhi Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiling Chang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xue Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jicheng Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Li Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaofei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lin Chen
- Department of General Surgery, Anhui Provincial Cancer Hospital, Hefei, 230032, China
| | - Hui Mo
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Luo
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Lunxi Duan
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Xue M, Ma C, Shan H, Hou S, Kang C. SPAG5 and ASPM play important roles in gastric cancer: An observational study. Medicine (Baltimore) 2024; 103:e38499. [PMID: 38875410 PMCID: PMC11175929 DOI: 10.1097/md.0000000000038499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Gastric cancer typically originates from the abnormal proliferation of normal cells within the gastric mucosa, eventually forming tumors. The roles of sperm-associated antigen 5 (SPAG5) and abnormal spindle-like microcephaly (ASPM) associated genes in gastric cancer are not yet clear. Gastric cancer datasets GSE51575 and GSE36076 profiles were downloaded from the GPL13607 and GPL570-generated gene expression omnibus database. The analysis included filtering for differentially expressed genes, weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis, construction and analysis of the protein-protein interaction network, survival analysis, and Comparative Toxicogenomics Database analysis. Heatmaps of gene expression were also created. A total of 1457 differentially expressed genes were identified. According to gene ontology analysis, they are primarily enriched in the metabolic processes of organic acids, condensed chromosome centromere regions, and oxidoreductase activity. Kyoto Encyclopedia of Gene and Genome analysis showed they are mainly involved in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. The soft threshold power for weighted gene co-expression network analysis was set to 8. Three core genes (CENPE, SPAG5, and ASPM) were identified. Heatmaps of core gene expression revealed that SPAG5 and ASPM are highly expressed in gastric cancer samples and low in normal samples. Comparative Toxicogenomics Database analysis indicated that the core genes (CENPE, SPAG5, and ASPM) are associated with gastric tumors, gastric diseases, gastritis, gastric ulcers, tumors, inflammation, and necrosis. The SPAG5 and ASPM genes are overexpressed in gastric cancer tissues, and higher expression levels are associated with worse prognosis, may serve as potential prognostic markers.
Collapse
Affiliation(s)
- Mei Xue
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chao Ma
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - HaiFeng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wang J, Qu J, Hou Q, Huo X, Zhao X, Chang L, Xu C. Strategies for the Isolation and Identification of Gastric Cancer Stem Cells. Stem Cells Int 2024; 2024:5553852. [PMID: 38882596 PMCID: PMC11178399 DOI: 10.1155/2024/5553852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) originate from both gastric adult stem cells and bone marrow cells and are conspicuously present within the histological milieu of gastric cancer tissue. GCSCs play pivotal and multifaceted roles in the initiation, progression, and recurrence of gastric cancer. Hence, the characterization of GCSCs not only facilitates precise target identification for prospective therapeutic interventions in gastric cancer but also has significant implications for targeted therapy and the prognosis of gastric cancer. The prevailing techniques for GCSC purification involve their isolation using surface-specific cell markers, such as those identified by flow cytometry and immunomagnetic bead sorting techniques. In addition, in vitro culture and side-population cell sorting are integral methods in this context. This review discusses the surface biomarkers, isolation techniques, and identification methods of GCSCs, as well as their role in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Jie Qu
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Qiang Hou
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
4
|
Chang J, Zhang Y, Zhou T, Qiao Q, Shan J, Chen Y, Jiang W, Wang Y, Liu S, Wang Y, Yu Y, Li C, Li X. RBM10 C761Y mutation induced oncogenic ASPM isoforms and regulated β-catenin signaling in cholangiocarcinoma. J Exp Clin Cancer Res 2024; 43:104. [PMID: 38576051 PMCID: PMC10993532 DOI: 10.1186/s13046-024-03030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) comprises a heterogeneous group of biliary tract cancer. Our previous CCA mutation pattern study focused on genes in the post-transcription modification process, among which the alternative splicing factor RBM10 captured our attention. However, the roles of RBM10 wild type and mutations in CCA remain unclear. METHODS RBM10 mutation spectrum in CCA was clarified using our initial data and other CCA genomic datasets from domestic and international sources. Real-time PCR and tissue microarray were used to detect RBM10 clinical association. Function assays were conducted to investigate the effects of RBM10 wild type and mutations on CCA. RNA sequencing was to investigate the changes in alternative splicing events in the mutation group compared to the wild-type group. Minigene splicing reporter and interaction assays were performed to elucidate the mechanism of mutation influence on alternative splicing events. RESULTS RBM10 mutations were more common in Chinese CCA populations and exhibited more protein truncation variants. RBM10 exerted a tumor suppressive effect in CCA and correlated with favorable prognosis of CCA patients. The overexpression of wild-type RBM10 enhanced the ASPM exon18 exon skipping event interacting with SRSF2. The C761Y mutation in the C2H2-type zinc finger domain impaired its interaction with SRSF2, resulting in a loss-of-function mutation. Elevated ASPM203 stabilized DVL2 and enhanced β-catenin signaling, which promoted CCA progression. CONCLUSIONS Our results showed that RBM10C761Y-modulated ASPM203 promoted CCA progression in a Wnt/β-catenin signaling-dependent manner. This study may enhance the understanding of the regulatory mechanisms that link mutation-altering splicing variants to CCA.
Collapse
Affiliation(s)
- Jiang Chang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laboratory for Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Tao Zhou
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Qian Qiao
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Jijun Shan
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
- Key Laboratory for Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yue Yu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
- Key Laboratory for Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laboratory for Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laboratory for Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
5
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
6
|
Chan T, Cheng L, Hsu C, Yang P, Liao T, Hsieh H, Lin P, HuangFu W, Chuu C, Tsai KK. ASPM stabilizes the NOTCH intracellular domain 1 and promotes oncogenesis by blocking FBXW7 binding in hepatocellular carcinoma cells. Mol Oncol 2024; 18:562-579. [PMID: 38279565 PMCID: PMC10920086 DOI: 10.1002/1878-0261.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Notch signaling is aberrantly activated in approximately 30% of hepatocellular carcinoma (HCC), significantly contributing to tumorigenesis and disease progression. Expression of the major Notch receptor, NOTCH1, is upregulated in HCC cells and correlates with advanced disease stages, although the molecular mechanisms underlying its overexpression remain unclear. Here, we report that expression of the intracellular domain of NOTCH1 (NICD1) is upregulated in HCC cells due to antagonism between the E3-ubiquitin ligase F-box/WD repeat-containing protein 7 (FBXW7) and the large scaffold protein abnormal spindle-like microcephaly-associated protein (ASPM) isoform 1 (ASPM-i1). Mechanistically, FBXW7-mediated polyubiquitination and the subsequent proteasomal degradation of NICD1 are hampered by the interaction of NICD1 with ASPM-i1, thereby stabilizing NICD1 and rendering HCC cells responsive to stimulation by Notch ligands. Consistently, downregulating ASPM-i1 expression reduced the protein abundance of NICD1 but not its FBXW7-binding-deficient mutant. Reinforcing the oncogenic function of this regulatory module, the forced expression of NICD1 significantly restored the tumorigenic potential of ASPM-i1-deficient HCC cells. Echoing these findings, NICD1 was found to be strongly co-expressed with ASPM-i1 in cancer cells in human HCC tissues (P < 0.001). In conclusion, our study identifies a novel Notch signaling regulatory mechanism mediated by protein-protein interaction between NICD1, FBXW7, and ASPM-i1 in HCC cells, representing a targetable vulnerability in human HCC.
Collapse
Affiliation(s)
- Tze‐Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang HospitalTaipei Medical UniversityTaiwan
- School of Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Pancreatic Cancer Group, Taipei Cancer CenterTaipei Medical UniversityTaiwan
| | - Li‐Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Core Laboratory of Organoids Technology, Office of R&DTaipei Medical UniversityTaiwan
| | - Chung‐Chi Hsu
- School of Medicine, College of MedicineI‐Shou UniversityKaohsiung CityTaiwan
| | - Pei‐Ming Yang
- Master Program in Graduate Institute of Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaiwan
| | - Tai‐Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Hsiao‐Yen Hsieh
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Pei‐Chun Lin
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Wei‐Chun HuangFu
- Master Program in Graduate Institute of Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaiwan
| | - Chih‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang HospitalTaipei Medical UniversityTaiwan
- Pancreatic Cancer Group, Taipei Cancer CenterTaipei Medical UniversityTaiwan
- Core Laboratory of Organoids Technology, Office of R&DTaipei Medical UniversityTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaiwan
| |
Collapse
|
7
|
Tsai KK, Bae BI, Hsu CC, Cheng LH, Shaked Y. Oncogenic ASPM Is a Regulatory Hub of Developmental and Stemness Signaling in Cancers. Cancer Res 2023; 83:2993-3000. [PMID: 37384617 PMCID: PMC10502471 DOI: 10.1158/0008-5472.can-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Despite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size. Mounting evidence has demonstrated the pleiotropic roles of ASPM in mitosis, cell-cycle progression, and DNA double-strand breaks (DSB) repair. Recently, the exon 18-preserved isoform 1 of ASPM has emerged as a critical regulator of cancer stemness and aggressiveness in various malignant tumor types. Here, we describe the domain compositions of ASPM and its transcript variants and overview their expression patterns and prognostic significance in cancers. A summary is provided of recent progress in the molecular elucidation of ASPM as a regulatory hub of development- and stemness-associated signaling pathways, such as the Wnt, Hedgehog, and Notch pathways, and of DNA DSB repair in cancer cells. The review emphasizes the potential utility of ASPM as a cancer-agnostic and pathway-informed prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Cheng LH, Hsu CC, Tsai HW, Liao WY, Yang PM, Liao TY, Hsieh HY, Chan TS, Tsai KK. ASPM Activates Hedgehog and Wnt Signaling to Promote Small Cell Lung Cancer Stemness and Progression. Cancer Res 2023; 83:830-844. [PMID: 36638332 DOI: 10.1158/0008-5472.can-22-2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Small cell lung cancer (SCLC) is among the most aggressive and lethal human malignancies. Most patients with SCLC who initially respond to chemotherapy develop disease relapse. Therefore, there is a pressing need to identify novel driver mechanisms of SCLC progression to unlock treatment strategies to improve patient prognosis. SCLC cells comprise subsets of cells possessing progenitor or stem cell properties, while the underlying regulatory pathways remain elusive. Here, we identified the isoform 1 of the neurogenesis-associated protein ASPM (ASPM-I1) as a prominently upregulated stemness-associated gene during the self-renewal of SCLC cells. The expression of ASPM-I1 was found to be upregulated in SCLC cells and tissues, correlated with poor patient prognosis, and indispensable for SCLC stemness and tumorigenesis. A reporter array screening identified multiple developmental signaling pathways, including Hedgehog (Hh) and Wnt pathways, whose activity in SCLC cells depended upon ASPM-I1 expression. Mechanistically, ASPM-I1 stabilized the Hh transcriptional factor GLI1 at the protein level through a unique exon-18-encoded region by competing with the E3 ligases β-TrCP and CUL3. In parallel, ASPM-I1 sustains the transcription of the Hh pathway transmembrane regulator SMO through the Wnt-DVL3-β-catenin signaling axis. Functional studies verified that the ASPM-I1-regulated Hh and Wnt activities significantly contributed to SCLC aggressiveness in vivo. Consistently, the expression of ASPM-I1 positively correlated with GLI1 and stemness markers in SCLC tissues. This study illuminates an ASPM-I1-mediated regulatory module that drives tumor stemness and progression in SCLC, providing an exploitable diagnostic and therapeutic target. SIGNIFICANCE ASPM promotes SCLC stemness and aggressiveness by stabilizing the expression of GLI1, DVL3, and SMO, representing a novel regulatory hub of Hh and Wnt signaling and targetable vulnerability.
Collapse
Affiliation(s)
- Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Tai-Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hsiao-Yen Hsieh
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
9
|
FOXM1 increases hTERT protein stability and indicates poor prognosis in gastric cancer. Neoplasia 2022; 36:100863. [PMID: 36528911 PMCID: PMC9792884 DOI: 10.1016/j.neo.2022.100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is one of most lethal diseases across the world. However, the underlying mechanism of gastric cancer carcinogenesis and development is still not fully known. Forkhead box M1 (FOXM1) belongs to the FOX family and has crucial roles in transactivation of multiple oncogenes in several cancer types, including gastric cancer. Recent studies have also shown the non-transcriptional function of FOXM1 via protein-protein interactions. Human telomerase reverse transcriptase (hTERT) is the core subunit of telomerase that facilitates cancer initiation and progression by maintaining cell immortalization, promoting cell proliferation and inhibiting cell apoptosis. However, the relationship between FOXM1 and hTERT in gastric cancer is still unclear. In our study, we found that FOXM1 and hTERT were convergent to the cell cycle-related pathways and they were positively related with advanced gastric cancer stages and poor outcomes. Simultaneous high levels of FOXM1 and hTERT predicted the worst prognosis. FOXM1 could increase hTERT protein rather than mRNA levels in a non-transcriptional manner. Mechanistically, FOXM1 interrupted the interaction between the E3 ligase MKRN1 and hTERT and decreased hTERT protein degradation. Further studies revealed that FOXM1 interacted with hTERT through its DNA-binding domain (DBD) region. Finally, we found that hTERT played important roles in FOXM1-mediated activation of the Wnt/β-catenin pathway to promote gastric cancer cell proliferation. Taken together, we found a novel non-classical function of FOXM1 to increase hTERT protein stability. Targeting the FOXM1-hTERT pathway may be a potential therapeutic strategy in treating gastric cancer.
Collapse
|
10
|
Qiu J, Tang Y, Liu L, Yu J, Chen Z, Chen H, Yuan R. FOXM1 is regulated by DEPDC1 to facilitate development and metastasis of oral squamous cell carcinoma. Front Oncol 2022; 12:815998. [PMID: 36072787 PMCID: PMC9443502 DOI: 10.3389/fonc.2022.815998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
The Disheveled, EGL-10, Pleckstrin domain containing 1 (DEPDC1) is a new oncogene that has recently been described. The mechanisms and functions of its expression are yet to be determined in oral squamous cell carcinoma (OSCC). In the present study, the impact of DEPDC1 on the growth and development of OSCC was investigated using animal models, cell lines and human tissue samples. Elevated DEPDC1 expression within cancer cell lines and human OSCC has been identified. Mechanistic examination showed that restored DEPDC1 expression in vivo and in vitro stimulated OSCC tumour development. In addition, FOXM1 interacts with DEPDC1 as indicated by co-immunoprecipitation and immunofluorescence testing. Functionally, DEPDC1 facilitated Wnt/β-catenin signal transduction and β-catenin protein nuclear expression. In summary, the DEPDC1, interacting with FOXM1 via Wnt/β-catenin signaling, the closely regulated OSCC pathogenesis, suggesting that targeting the novel DEPDC1/FOXM1/β-catenin complex is an essential OSCC therapeutic approach.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yongping Tang
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Lan Liu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Jiangbo Yu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi, China
- Research Institute of Xi’an Jiaotong University, Hangzhou, Zhejiang, China
- *Correspondence: Rongtao Yuan, ; Hao Chen,
| | - Rongtao Yuan
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong, China
- *Correspondence: Rongtao Yuan, ; Hao Chen,
| |
Collapse
|
11
|
Zheng X, Peng B, Wu X, Ye J, Zhao H, Li Y, Chen R, Gong X, Zhang H, Guo X. Male-specific long non-coding RNA testis-specific transcript, Y-linked 15 promotes gastric cancer cell growth by regulating Wnt family member 1/β-catenin signaling by sponging microRNA let-7a-5p. Bioengineered 2022; 13:8605-8616. [PMID: 35287556 PMCID: PMC9161946 DOI: 10.1080/21655979.2022.2053814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study is aimed to investigate the regulatory effects and related mechanism of long non-coding RNA testis-specific transcript, Y-linked 15 (TTTY15) in gastric carcinoma (GC) cell proliferation, migration, invasion, apoptosis and epithelial–mesenchymal transition (EMT). TTTY15 expression in GC tissue samples and cells was detected by quantitative real-time PCR (qRT-PCR), and the correlation between TTTY15 expression and GC clinicopathological indicators was analyzed. Cell counting kit-8 (CCK-8), BrdU, flow cytometry and Transwell assays were performed for detecting GC cell proliferation, migration, invasion and apoptosis. Western blot was performed for detecting the expressions of EMT-associated proteins (N-cadherin and E-cadherin), Wnt family member 1 (Wnt1) protein and β-catenin protein. Bioinformatics analysis was conducted to predict, and RNA immunoprecipitation (RIP) assay and dual-luciferase reporter gene assay were performed to verify the targeted relationships of microRNA let-7a-5p (let-7a-5p) with TTTY15 and Wnt1 mRNA 3'UTR. It was found that TTTY15 expression was significantly up-regulated in GC tissues and cells, and was associated with advanced TNM stage and poor tumor differentiation. TTTY15 overexpression promoted GC cell proliferation, migration and invasion, the expressions of N-cadherin, Wnt1 and β-catenin protein, and inhibited the apoptosis and E-cadherin expression, while knocking down TTTY15 had the opposite effects. TTTY15 directly targeted let-7a-5p and negatively regulated its expression. Wnt1 was the target gene of let-7a-5p, and TTTY15 could indirectly and positively regulate Wnt1 expression. In conclusion, TTTY15 promotes GC progression, by regulating the let-7a-5p/Wnt1 axis to activate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- XiaoYing Zheng
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - BingJun Peng
- Department of Medical Imaging Center, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - XinChun Wu
- Fourth Department of Internal Medicine, Qianxi County People's Hospital, Tangshan 063000, Hebei, China
| | - JunLing Ye
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - HaiYun Zhao
- Department of Pathology, Menyuan Hui Autonomous County traditional Chinese Medicine Hospital, Qinghai, China
| | - YanJun Li
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - RuiHui Chen
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - Xue Gong
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - HaiYan Zhang
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| | - XinJian Guo
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China
| |
Collapse
|
12
|
Wang L, Hu XD, Li SY, Liang XY, Ren L, Lv SX. ASPM facilitates colorectal cancer cells migration and invasion by enhancing β-catenin expression and nuclear translocation. Kaohsiung J Med Sci 2021; 38:129-138. [PMID: 34741399 DOI: 10.1002/kjm2.12464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Increased abnormal spindle-like microcephaly (ASPM) expression has been linked to clinical stage and poor prognosis in cancers, but the molecular mechanisms by which ASPM promotes cell metastasis in colorectal cancer (CRC) has not been identified. This study showed that the abilities of cell migration, invasion, and epithelial-mesenchymal transition (EMT) were attenuated in ASPM-deficient CRC cell lines. Furthermore, we reported that attenuation of ASPM expression inhibited CRC cell metastasis in vivo. Additionally, the expression of ASPM was positively correlated with β-catenin level in CRC tissues. Mechanistically, ASPM can upregulate β-catenin transcription by stimulating the β-catenin promoter and enhancing the nuclear translocation of β-catenin in CRC cells, which leads to the activation of the Wnt/β-catenin pathway. Finally, we showed that ASPM effectively induced CRC cell migration and invasion in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Gastroenterology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xiao-Dan Hu
- Department of Gastroenterology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shou-Ying Li
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Gastroenterology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xu-Yang Liang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Gastroenterology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lin Ren
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Gastroenterology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Sheng-Xiang Lv
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Gastroenterology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
13
|
Zhang H, Yang X, Zhu L, Li Z, Zuo P, Wang P, Feng J, Mi Y, Zhang C, Xu Y, Jin G, Zhang J, Ye H. ASPM promotes hepatocellular carcinoma progression by activating Wnt/β-catenin signaling through antagonizing autophagy-mediated Dvl2 degradation. FEBS Open Bio 2021; 11:2784-2799. [PMID: 34428354 PMCID: PMC8487047 DOI: 10.1002/2211-5463.13278] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. In this article, we show that expression of abnormal spindle‐like microcephaly‐associated protein (ASPM) is up‐regulated in liver cancer samples, and this up‐regulation is significantly associated with tumor aggressiveness and reduced survival times of patients. Down‐regulation of ASPM expression inhibits the proliferation, invasion, migration and epithelial‐to‐mesenchymal transition of HCC cells in vitro and inhibits tumor formation in nude mice. ASPM interacts with disheveled‐2 (Dvl2) and antagonizes autophagy‐mediated Dvl2 degradation by weakening the functional interaction between Dvl2 and the lipidated form of microtubule‐associated proteins 1A/1B light chain 3A (LC3II), thereby increasing Dvl2 protein abundance and leading to Wnt/β‐catenin signaling activation in HCC cells. Thus, our results define ASPM as a novel oncoprotein in HCC and indicate that disruption of the Wnt–ASPM–Dvl2–β‐catenin signaling axis might have potential clinical value.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Xiaobei Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Lili Zhu
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Zhihui Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Peipei Zuo
- Academy of Medical Sciences, Zhengzhou University, China
| | - Peng Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, China
| | - Jingyu Feng
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Yang Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Chengjuan Zhang
- Center of Repository, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Yan Xu
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | - Ge Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, China
| | | | - Hua Ye
- College of Public Health, Zhengzhou University, China
| |
Collapse
|