1
|
Pu J, Yan X, Zhang H. The potential of circular RNAs as biomarkers and therapeutic targets for gastric cancer: A comprehensive review. J Adv Res 2024:S2090-1232(24)00551-4. [PMID: 39617262 DOI: 10.1016/j.jare.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a global health concern, contributing significantly to cancer-related mortality rates. Early detection is vital for improving patient outcomes. Recently, circular RNAs (circRNAs) have emerged as crucial players in the development and progression of various cancers, including GC. AIM This comprehensive review underscores the promising potential of circRNAs as innovative biomarkers for the early diagnosis of GC, as well as their possible utility as therapeutic targets for this life-threatening disease. Specifically, the review focuses on recent findings, mechanistic insights, and clinical applications of circRNAs in GC. KEY SCIENTIFIC CONCEPTS OF REVIEW Dysregulation of circRNAs has been consistently observed in GC tissues, offering potential diagnostic value due to their stability in bodily fluids such as blood and urine. For instance, circPTPN22 and hsa_circ_000200. Furthermore, the expression levels of circRNAs such as circCUL2, hsa_circ_0000705 and circSHKBP1 have shown strong associations with critical clinical features of GC, including diagnosis, prognosis, tumor size, lymph node metastasis, tumor-node-metastasis (TNM) stage, and treatment response. Additionally, circRNAs such as circBGN, circLMO7, and circMAP7D1 have shown interactions with specific microRNAs (miRNAs), proteins, and other molecules that play key roles in development and progression of GC. This further highlighting their potential as therapeutic targets. Despite their potential, several challenges need to be addressed to effectively apply circRNAs as GC biomarkers. These include standardizing detection methods, establishing cutoff values for diagnostic accuracy, and validating findings in larger patient cohorts. Moreover, the functional mechanisms by which circRNAs contribute to GC pathogenesis and therapeutic resistance warrant further investigation. Advances in circRNAs research could provide valuable insights into the early detection and targeted treatment of GC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junlin Pu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Dong X, Cheng T, Zhang L, Song L, Shi C. CircTSN promotes the proliferation and metastasis of gastric cancer through the miR-1825/SLC38A2 signaling axis. Discov Oncol 2024; 15:533. [PMID: 39379756 PMCID: PMC11461732 DOI: 10.1007/s12672-024-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Comprehensive treatment of gastric cancer (GC) is progressing, but the rapid proliferation and metastasis of GC remains a cause of high recurrence and mortality rates. In this study we investigated GC-associated circRNA tending to yield more insight into the mechanisms of gastric cancer development. METHODS We detected the expression levels of circTSN in GC tissues and cell lines using qRT-PCR. The circular structure of circTSN was confirmed by Sanger sequencing, agarose gel electrophoresis and RNase R. A series of cell functional experiments were employed to investigate the implication of circTSN aberrant expression on the proliferation and metastasis of GC cells. The predicted binding domain between circTSN and miR-1825 was analyzed by luciferase reporter gene analysis. Meanwhile, subcutaneous tumor xenografts in nude mice were used to validate the role of circTSN in vivo. RESULTS It was found that RNA levels of circTSN were significantly elevated in GC tissues and cell lines, which was also confirmed to contain a closed-loop structure. CCK8, clone formation, EdU, transwell and in vivo experiments indicated that the highly expressed circTSN was involved in the proliferation and metastasis process of GC. In addition, circTSN modulates the expression of SLC38A2 by sequence-specific binding to miR-1825. CONCLUSION This study identified that circTSN, which is highly expressed in GC, was able to contribute to the proliferation and metastasis of GC cell through miR-1825/SLC38A2 axis and this might provide a new candidate target for the precision treatment of GC.
Collapse
Affiliation(s)
- Xuqiang Dong
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Tianyu Cheng
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Lijun Zhang
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Liqun Song
- Department of Operating Room, Yixing People's Hospital, Wuxi, Jiangsu, China.
| | - Chao Shi
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Zang X, Wang R, Wang Z, Qiu S, Zhang F, Zhou L, Shen Y, Qian H, Xu W, Jiang J. Exosomal circ50547 as a potential marker and promotor of gastric cancer progression via miR-217/HNF1B axis. Transl Oncol 2024; 45:101969. [PMID: 38692196 PMCID: PMC11070923 DOI: 10.1016/j.tranon.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Exosomes, one of small extracellular vesicles, play a vital role in cell to cell communication and contribute to the advancement of tumors through their cargo molecules. Exosomal circRNAs have emerged as significant players in various types of tumors. Thus, this study aimed to investigate how exosomal circRNAs are involved in the diagnosis and progression of gastric cancer (GC). METHODS Serum exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis and Western blot. CCK-8, colony formation and transwell assays were conducted to study the function of hsa_circ_0050547 (named as circ50547). qRT-PCR was used to quantify the expression of circ50547 in GC tissues and serum exosomes. Fluorescence in situ hybridization was applied to detect the cellular distribution of circ50547. Stemness and drug-resistance were detected by sphere formation, WB, flow cytometry and half-maximal inhibitory concentration analyses. Bioinformatic analyses, luciferase experiments, qRT-PCR and WB were used to investigate molecular mechanisms. RESULTS We discovered for the first time a new type of GC-derived exosomal circRNA, circ50547. We found that circ50547 is highly expressed in both GC tissues and serum exosomes. Interestingly, we observed that the diagnostic value of exosomal circ50547 is superior to that of serum circ50547. Circ50547 overexpression enhanced the proliferation, migration, invasion, stemness and drug resistance of GC cells, while knockdown of circ50547 showed the opposite effect. Mechanistically, circ50547 acted as a sponge for miR-217 to regulate the expression of HNF1B, which promoted gastric cancer progression. CONCLUSION Exosomal circ50547 may be a promising marker for the diagnosis and prognosis prediction of GC. These findings suggest that it plays an oncogenic role through miR-217/HNF1B signaling pathway in GC.
Collapse
Affiliation(s)
- Xueyan Zang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Jiangsu 215600, PR China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Rongrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Ziyi Wang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Jiangsu 215600, PR China
| | - Shuangyang Qiu
- Affiliated fourth Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Fan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Le Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ye Shen
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Jiangsu 215600, PR China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Jiangsu 215600, PR China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Jiangsu 215600, PR China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
4
|
Shen Y, Huang Q, Yuan X, Gong H, Xu C, Du H, Hsueh CY, Zhou L. Nicotine-induced activation of cholinergic receptor nicotinic alpha 5 subunit mediates the malignant behaviours of laryngeal squamous epithelial cells by interacting with RABL6. Cell Death Discov 2024; 10:286. [PMID: 38879667 PMCID: PMC11180178 DOI: 10.1038/s41420-024-02051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024] Open
Abstract
Nicotine, a crucial constituent of tobacco smoke, can bind to and activate nicotinic acetylcholine receptors (nAChRs), thereby regulating various biological functions. However, the specific mechanisms through which nicotine mediates nAChRs to regulate the metastasis of laryngeal squamous cell carcinoma (LSCC) remain elusive. In this study, smoking status was found to be closely associated with metastasis in patients with LSCC. In addition, nicotine exposure potentiated the hematogenous and lymphatic metastatic capacity of LSCC cells. Nicotine activates membrane-bound CHRNA5, promoting cell migration and invasion, EMT and cell-ECM adhesion in LSCC. Furthermore, this study demonstrated that the Ras superfamily protein RABL6 directly interacted with CHRNA5, which preferentially binds to the RABL6-39-279aa region, and this interaction was enhanced by nicotine. Nicotine-mediated activation of CHRNA5 enhanced its interaction with RABL6, triggering the JAK2/STAT3 signalling pathway and eventually augmenting the metastatic potential of LSCC cells. This study reveals a novel mechanism through which nicotine-mediated CHRNA5-RABL6 interaction promotes the metastasis of LSCC. The findings of this study may help to develop effective strategies for improving the outcome of patients with LSCC in clinical settings.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Xiaohui Yuan
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Hongli Gong
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chengzhi Xu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Huaidong Du
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
5
|
Ni L, Gao Q, Zhao Q, Dai K, Jin M, Fu C, Xiao M, Zhu W, Bi Y. Circ-EIF3I Promotes Hepatocellular Carcinoma Progression Through Modulating miR-361-3p/DUSP2 Axis. DNA Cell Biol 2024; 43:258-266. [PMID: 38513057 DOI: 10.1089/dna.2023.0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers globally. Circular RNAs (circRNAs) have been implicated in the development of HCC. Previous studies have confirmed that circ-EIF3I plays an important role in the progress of lung cancer. Nevertheless, the biological functions of circ-EIF3I and the underlying mechanisms by which they regulate HCC progression remain unclear. In this study, the regulatory mechanism and targets were studied with bioinformatics analysis, luciferase reporting analysis, transwell migration, Cell Counting Kit-8, and 5-Ethynyl-2'-deoxyuridine analysis. In addition, in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circ-EIF3I in HCC. The result shows that the circ-EIF3I expression was increased in HCC cell line, which means that circ-EIF3I plays a role in the progression of HCC. Downregulation of circ-EIF3I suppressed HCC cells' proliferation and migration in both in vivo and in vitro experiments. Bioinformatics and luciferase report analysis confirmed that both miR-361-3p and Dual-specificity phosphatase 2 (DUSP2) were the downstream target of circ-EIF3I. The overexpression of DUSP2 or inhibition of miR-361-3p restored HCC cells' proliferation and migration ability after silence circ-EIF3I. Taken together, our study found that downregulation of circ-EIF3I suppressed the progression of HCC through miR-361-3p/DUSP2 Axis.
Collapse
Affiliation(s)
- Lingna Ni
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Qianqian Gao
- Department of Pathology, Changzhou Tumor Hospital, Changzhou, China
| | - Qiu Zhao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Kejun Dai
- Department of Radiotherapy, Changzhou Tumor Hospital, Changzhou, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cong Fu
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Min Xiao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Wenyu Zhu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yanzhi Bi
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| |
Collapse
|
6
|
Sun L, Bin S, Huang C, Wang Q. CircROR1 upregulates CCNE1 expression to promote melanoma invasion and metastasis by recruiting KAT2A. Exp Dermatol 2024; 33:e15071. [PMID: 38566477 DOI: 10.1111/exd.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Litong Sun
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shizhen Bin
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Li Y, Fan L, Yan A, Ren X, Zhao Y, Hua B. Exosomal miR-361-3p promotes the viability of breast cancer cells by targeting ETV7 and BATF2 to upregulate the PAI-1/ERK pathway. J Transl Med 2024; 22:112. [PMID: 38282047 PMCID: PMC10823750 DOI: 10.1186/s12967-024-04914-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Malignant progression is the major cause of poor prognosis in breast cancer (BC) patients. Plasma exosomal miRNAs have been reported to be involved in tumor progression, but their roles in BC remain unclear. METHODS We performed plasma exosomal miRNA sequencing on 45 individuals, including healthy controls and nonmetastatic and metastatic BC patients. We examined the correlation between miRNA expression in tumor tissues and plasma exosomes in BC patients by qRT‒PCR. The effects of exosomal miR-361-3p on BC cells were determined by CellTiter-Glo, migration and wound healing assays. The target genes of miR-361-3p and downstream pathways were explored by dual-luciferase reporter assay, RNA knockdown, rescue experiments, and western blotting. We utilized murine xenograft model to further assess the impact of plasma exosomal miR-361-3p on the malignant progression of BC. RESULTS We found that the expression level of plasma exosomal miR-361-3p gradually increased with malignant progression in BC patients, and the expression of miR-361-3p in plasma exosomes and BC tissues was positively correlated. Consistently, exosomal miR-361-3p enhanced the migration and proliferation of two BC cell lines, MDA-MB-231 and SK-BR-3. Furthermore, our data showed that miR-361-3p inhibited two novel target genes, ETV7 and BATF2, to activate the PAI-1/ERK pathway, leading to increased BC cell viability. Finally, the consistency of the in vivo experimental results supported that elevated plasma exosomal miR-361-3p promote the malignant progression of BC. CONCLUSIONS We found for the first time that plasma exosomal miR-361-3p was associated with malignant progression in BC patients. Mechanistically, exosomal miR-361-3p can enhance the migration and proliferation of BC cells by targeting the ETV7 and BATF2/PAI-1/ERK pathways. Our data suggest that plasma exosomal miR-361-3p has the potential to serve as a biomarker for predicting malignant progression in BC patients.
Collapse
Affiliation(s)
- Yao Li
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lei Fan
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - An Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Xiaotian Ren
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Bin Hua
- Breast center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Ullah A, Zhao J, Li J, Singla RK, Shen B. Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules. Life Sci 2024; 336:122277. [PMID: 37995936 DOI: 10.1016/j.lfs.2023.122277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Gastric cancer (GC) is the fifth-most prevalent and second-most deadly cancer worldwide. Due to the late onset of symptoms, GC is frequently treated at a mature stage. In order to improve the diagnostic and clinical decision-making processes, it is necessary to establish more specific and sensitive indicators valuable in the early detection of the disease whenever a cancer is asymptomatic. In this work, we gathered information about CXC chemokines and GC by using scientific search engines including Google Scholar, PubMed, SciFinder, and Web of Science. Researchers believe that GC chemokines, small proteins, class CXC chemokines, and chemokine receptors promote GC inflammation, initiation, and progression by facilitating angiogenesis, tumor transformation, invasion, survival, metastatic spread, host response safeguards, and inter-cell interaction. With our absolute best professionalism, the role of CXC chemokines and their respective receptors in GC diagnosis and prognosis has not been fully explained. This review article updates the general characteristics of CXC chemokines, their unique receptors, their function in the pathological process of GC, and their potential application as possible indicators for GC. Although there have only recently been a few studies focusing on the therapeutic efficacy of CXC chemokine inhibitors in GC, growing experimental evidence points to the inhibition of CXC chemokines as a promising targeted therapy. Therefore, further translational studies are warranted to determine whether specific antagonists or antibodies designed to target CXC chemokines alone or in combination with chemotherapy are useful for diagnosing advanced GC.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Zhao
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rajeev K Singla
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Liu Y, Cao J, Yang Q, Zhu L, Zhao W, Wang X, Yao J, Zhou Y, Shao S. CircRNA_15430 reduced by Helicobacter pylori infection and suppressed gastric cancer progression via miR-382-5p/ZCCHC14 axis. Biol Direct 2023; 18:51. [PMID: 37626393 PMCID: PMC10463649 DOI: 10.1186/s13062-023-00402-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H.pylori, HP) is one of the main causes of gastric cancer (GC). CircRNAs have been reported to play a crucial role in developing many types of cancer. However, the role of circRNAs in the development and progression of HP infected-GC has not been studied. METHODS The location of circRNA_15430 in GC cells were detected by nuclear and cytoplasmic RNA fractionation and RNA fluorescence in situ hybridization analysis (FISH) assays, and circRNA_15430, miR-382-5p and ZCCHC14 expression in GC cell lines and tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The function of circRNA_15430 in GC cells were examined by using colony formation, cell counting kit-8 (CCK-8) and Transwell assays, flow cytometry and laser scanning confocal microscopy. The protein levels were detected by Western blotting. Whether circRNA_15430 sponges miR-382-5p was monitored with a dual-luciferase reporter assay. Furthermore, circRNA_15430 was analyzed in vivo in tumor growth with nude mice. RESULTS CircRNA_15430 is primarily localized in the cytoplasm of GC cells, and downregulated in the GC cell lines and tissues, and is negatively correlated with the tumor size. Downregulation of circRNA_15430 promotes proliferation, migration and suppresses cell apoptosis and autophagy in GC cells. Mechanically, circRNA_15430 acts as a miR-382-5p sponge, alleviating the inhibitory effect of miR-382-5p on its target ZCCHC14. Knockdown circRNA_15430 enhances tumor growth in vivo. In addition, circRNA_15430 was reduced in HP + gastritis tissues and HP-infected MGC-803 cells, reversing the pro-HP effect on autophagy. Additionally, miR-382-5p was increased in HP + gastritis tissue and HP-infected MGC-803 cells while ZCCHC14 decreased in HP-infected MGC-803 cells. MiR-382-5p reverses the effect of si-ZCCHC14 on autophagosome numbers in MGC-803 cells. CONCLUSIONS Therefore, circRNA_15430 plays an inhibitory role in GC and regulates the progression of HP infection-related GC, providing a novel molecular marker for GC therapy.
Collapse
Affiliation(s)
- Yun Liu
- Department of Digestive, the Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu, 212002, China
| | - Jia Cao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qi Yang
- Department of Pathology, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Linqi Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Wenjun Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Xiuping Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Jun Yao
- Department of Digestive, the Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu, 212002, China.
| | - Yong Zhou
- Department of Digestive, the Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu, 212002, China.
| | - Shihe Shao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
10
|
Yu Y, Meng LL, Chen XY, Fan HN, Chen M, Zhang J, Zhu JS. m 6A reader YTHDF3 is associated with clinical prognosis, related RNA signatures and immunosuppression in gastric cancer. Cell Signal 2023; 108:110699. [PMID: 37149073 DOI: 10.1016/j.cellsig.2023.110699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND YTHDF3 as a N6-methyladenosine (m6A) reader participates in the development and progression of multiple cancer types, however, the prognosis, molecular biology and immune infiltration of YTHDF3 in gastric cancer (GC) have not been investigated. METHODS The YTHDF3 expression profile and clinicopathological parameters of stomach adenocarcinoma (STAD) were downloaded from TCGA. The online websites and databases such as GEPIA2, cBioPortal, UALCAN, ImmuCellAl, xCell, TISIDB, GSCA were utilized for analysis of the association of YTHDF3 with STAD, including clinical prognosis, WGCNA and LASSO Cox regression analysis. Further functional assays such as RT-qPCR, Western blot, immunohistochemistry (IHC), immunofluorescence (IF), CCK-8, colony formation, EdU and Transwell assays were performed to determine the role of YTHDF3 in GC. RESULTS We found that YTHDF3 was upregulated in STAD tissue samples ascribed to its copy number amplification and associated with poor prognosis in patients with STAD. GO and KEGG analyses showed that YTHDF3-related differential genes were predominantly enriched in the proliferation, metabolism and immune signaling pathways. Knockdown of YTHDF3 repressed the growth and invasion of GC cells by inhibition of PI3K/AKT signaling. We then identified YTHDF3-related lncRNAs, miRNAs and mRNAs, and constructed their prognostic signatures in patients with STAD. Moreover, YTHDF3 associated with tumor immune infiltration such as CD8+ T cells, macrophages, Tregs, MHC molecules and chemokines, upregulated PD-L1 and CXCL1 and exerted a response to the immunotherapy in GC. CONCLUSIONS YTHDF3 upregulation indicates poor prognosis and promotes GC cell growth and invasion by activating PI3K/AKT pathway and regulating immune microenvironment. The established YTHDF3-related signatures highlight the association of YTHDF3 with the clinical prognosis and immune cell infiltration in GC.
Collapse
Affiliation(s)
- Yi Yu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li-Li Meng
- Department of Pathology, Zhongshan Hospital, Fudan University, China
| | - Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ming Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
11
|
m 5C-dependent cross-regulation between nuclear reader ALYREF and writer NSUN2 promotes urothelial bladder cancer malignancy through facilitating RABL6/TK1 mRNAs splicing and stabilization. Cell Death Dis 2023; 14:139. [PMID: 36806253 PMCID: PMC9938871 DOI: 10.1038/s41419-023-05661-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
The significance of 5-methylcytosine (m5C) methylation in human malignancies has become an increasing focus of investigation. Here, we show that m5C regulators including writers, readers and erasers, are predominantly upregulated in urothelial carcinoma of the bladder (UCB) derived from Sun Yat-sen University Cancer Center and The Cancer Genome Atlas cohort. In addition, NOP2/Sun RNA methyltransferase family member 2 (NSUN2) as a methyltransferase and Aly/REF export factor (ALYREF) as a nuclear m5C reader, are frequently coexpressed in UCB. By applying patient-derived organoids model and orthotopic xenograft mice model, we demonstrate that ALYREF enhances proliferation and invasion of UCB cells in an m5C-dependent manner. Integration of tanscriptome-wide RNA bisulphite sequencing (BisSeq), RNA-sequencing (RNA-seq) and RNA Immunoprecipitation (RIP)-seq analysis revealed that ALYREF specifically binds to hypermethylated m5C site in RAB, member RAS oncogene family like 6 (RABL6) and thymidine kinase 1 (TK1) mRNA via its K171 domain. ALYREF controls UCB malignancies through promoting hypermethylated RABL6 and TK1 mRNA for splicing and stabilization. Moreover, ALYREF recognizes hypermethylated m5C site of NSUN2, resulting in NSUN2 upregulation in UCB. Clinically, the patients with high coexpression of ALYREF/RABL6/TK1 axis had the poorest overall survival. Our study unveils an m5C dependent cross-regulation between nuclear reader ALYREF and m5C writer NSUN2 in activation of hypermethylated m5C oncogenic RNA through promoting splicing and maintaining stabilization, consequently leading to tumor progression, which provides profound insights into therapeutic strategy for UCB.
Collapse
|
12
|
Chen L, Deng J. Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer. J Mol Med (Berl) 2022; 100:1703-1719. [PMID: 36329206 DOI: 10.1007/s00109-022-02264-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Gastric cancer remains one of the cancers with the highest mortality in the world; therefore, it is very important to investigate its pathogenesis to improve the prognosis of gastric cancer patients. Recently, noncoding RNAs have become a research hotspot in the field of oncology. These RNA molecules play complex roles in the regulation of tumor cells, immune cells, and the tumor microenvironment. Therefore, studying their ability to regulate the gastric cancer immune microenvironment will provide us with a better perspective to understand their potential role in anticancer therapy. In this review, we discuss the regulatory effects of several common noncoding RNAs on the immune microenvironment of gastric cancer and their prospects in anticancer therapy to provide some novel insight into the identification of valuable diagnostic markers and improving the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
13
|
Qi X, Chen X, Zhao Y, Chen J, Niu B, Shen B. Prognostic Roles of ceRNA Network-Based Signatures in Gastrointestinal Cancers. Front Oncol 2022; 12:921194. [PMID: 35924172 PMCID: PMC9339642 DOI: 10.3389/fonc.2022.921194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gastrointestinal cancers (GICs) are high-incidence malignant tumors that seriously threaten human health around the world. Their complexity and heterogeneity make the classic staging system insufficient to guide patient management. Recently, competing endogenous RNA (ceRNA) interactions that closely link the function of protein-coding RNAs with that of non-coding RNAs, such as long non-coding RNA (lncRNA) and circular RNA (circRNA), has emerged as a novel molecular mechanism influencing miRNA-mediated gene regulation. Especially, ceRNA networks have proven to be powerful tools for deciphering cancer mechanisms and predicting therapeutic responses at the system level. Moreover, abnormal gene expression is one of the critical breaking events that disturb the stability of ceRNA network, highlighting the role of molecular biomarkers in optimizing cancer management and treatment. Therefore, developing prognostic signatures based on cancer-specific ceRNA network is of great significance for predicting clinical outcome or chemotherapy benefits of GIC patients. We herein introduce the current frontiers of ceRNA crosstalk in relation to their pathological implications and translational potentials in GICs, review the current researches on the prognostic signatures based on lncRNA or circRNA-mediated ceRNA networks in GICs, and highlight the translational implications of ceRNA signatures for GICs management. Furthermore, we summarize the computational approaches for establishing ceRNA network-based prognostic signatures, providing important clues for deciphering GIC biomarkers.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen,
| |
Collapse
|
14
|
Chen C, Xia C, Tang H, Jiang Y, Wang S, Zhang X, Huang T, Yuan X, Wang J, Peng L. Circular RNAs Involve in Immunity of Digestive Cancers From Bench to Bedside: A Review. Front Immunol 2022; 13:833058. [PMID: 35464462 PMCID: PMC9020258 DOI: 10.3389/fimmu.2022.833058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system plays a complex role in tumor formation and development. On the one hand, immune surveillance can inhibit the growth of tumors; on the other hand, immune evasion of tumors can create conditions conducive for tumor development and growth. CircRNAs are endogenous non-coding RNAs with a covalently closed loop structure that are abundantly expressed in eukaryotic organisms. They are characterized by stable structure, rich diversity, and high evolutionary conservation. In particular, circRNAs play a vital role in the occurrence, development, and treatment of tumors through their unique functions. Recently, the incidence and mortality of digestive cancers, especially those of gastric cancer, colorectal cancer, and liver cancer, have remained high. However, the functions of circRNAs in digestive cancers immunity are less known. The relationship between circRNAs and digestive tumor immunity is systematically discussed in our paper for the first time. CircRNA can influence the immune microenvironment of gastrointestinal tumors to promote their occurrence and development by acting as a miRNA molecular sponge, interacting with proteins, and regulating selective splicing. The circRNA vaccine even provides a new idea for tumor immunotherapy. Future studies should be focused on the location, transportation, and degradation mechanisms of circRNA in living cells and the relationship between circRNA and tumor immunity. This paper provides a new idea for the diagnosis and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Chunyue Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Congcong Xia
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Tang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yirun Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Li Peng, ; Junpu Wang,
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Peng, ; Junpu Wang,
| |
Collapse
|
15
|
Zhou Y, Zhang Q, Liao B, Qiu X, Hu S, Xu Q. Circ_0006089 promotes gastric cancer growth, metastasis, glycolysis and angiogenesis by regulating miR‐361‐3p/TGFB1. Cancer Sci 2022; 113:2044-2055. [PMID: 35347818 PMCID: PMC9207367 DOI: 10.1111/cas.15351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNA (circRNA) participates in a variety of pathophysiological processes, including the development of gastric cancer (GC). However, the role of circ_0006089 in GC progression and its underlying molecular mechanism need to be further revealed. Quantitative real‐time PCR was utilized for detecting circ_0006089, microRNA (miR)‐361‐3p and transforming growth factor‐β1 (TGFB1) expression. The interaction between miR‐361‐3p and circ_0006089 or TGFB1 was confirmed using a dual‐luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. Cell proliferation, metastasis, apoptosis, and angiogenesis were determined using colony formation assay, EdU assay, transwell assay, flow cytometry, and tube formation assay. Cell glycolysis was evaluated by detecting glucose consumption, lactate production, and ATP levels. In addition, western blot (WB) analysis was used to measure protein expression. Xenograft tumor models were used to assess the effect of circ_0006089 knockdown on GC tumorigenesis. circ_0006089 had been found to be upregulated in GC tissues and cells, and it could act as an miR‐361‐3p sponge. circ_0006089 knockdown suppressed GC proliferation, metastasis, glycolysis, angiogenesis, and increased apoptosis, while this effect could be revoked by miR‐361‐3p inhibitor. TGFB1 was targeted by miR‐361‐3p, and its overexpression reversed the effects of miR‐361‐3p on GC cell function. Also, circ_0006089 promoted TGFB1 expression via sponging miR‐361‐3p. Animal experiments showed that silenced circ_0006089 inhibited GC tumorigenesis through the miR‐361‐3p/TGFB1 pathway. Our results revealed that the circ_0006089/miR‐361‐3p/TGFB1 axis contributed to GC progression, confirming that circ_0006089 might be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Qilin Zhang
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Bingling Liao
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Xiaofeng Qiu
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Sheng Hu
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Qihua Xu
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| |
Collapse
|